天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

基于數(shù)據(jù)挖掘和GSA-BP多模型神經(jīng)網(wǎng)絡的微網(wǎng)短期負荷預測

發(fā)布時間:2018-11-10 19:08
【摘要】:隨著我國經(jīng)濟的快速發(fā)展,能源枯竭問題日益加重,微網(wǎng)作為一種清潔友好型能源,能夠利用當?shù)氐馁Y源優(yōu)勢,有效解決我國中西部偏遠地區(qū)用電難、電能運輸成本高、利用率低等問題。而微網(wǎng)短期負荷預測作為微網(wǎng)中的研究熱點,日益受到研究人員的關注。對微網(wǎng)短期負荷進行有效預測,能夠為微網(wǎng)系統(tǒng)節(jié)能高效的運行提供保障、為電力調(diào)度部門制定發(fā)電計劃提供依據(jù)。因此加強微網(wǎng)的負荷預測無論對微網(wǎng)系統(tǒng)本身還是對大電網(wǎng)都有重要的意義。本文針對微網(wǎng)負荷的特點,提出了基于數(shù)據(jù)挖掘和遺傳模擬退火算法(GSA算法)優(yōu)化的多模型神經(jīng)網(wǎng)絡微網(wǎng)短期負荷預測模型。主要研究工作以及創(chuàng)新性內(nèi)容如下:首先,對影響微網(wǎng)負荷的氣象、日類型以及實際歷史負荷等因素進行分析,根據(jù)這些因素建立微網(wǎng)負荷預測的初步樣本數(shù)據(jù),利用數(shù)據(jù)挖掘技術(shù)對該樣本數(shù)據(jù)進行挖掘處理,并建立基本預測模型。具體處理方法為:(1)利用粗糙集屬性約簡算法對樣本數(shù)據(jù)進行約簡處理,找到影響微網(wǎng)負荷的核心因素,并將其作為預測模型的輸入;(2)針對微網(wǎng)負荷的波動性、隨機性等特點,對約簡后的樣本數(shù)據(jù)進行模糊聚類分析,將樣本數(shù)據(jù)分為若干類,并針對每一類樣本建立對應的BP神經(jīng)網(wǎng)絡預測模型;(3)在對微網(wǎng)負荷進行預測時,通過模式識別技術(shù)尋找與預測日最近的樣本集合對應的網(wǎng)絡,并利用此網(wǎng)絡對微網(wǎng)負荷進行預測。通過以上幾步建立了基于多模型BP網(wǎng)絡的微網(wǎng)短期負荷預測模型。通過仿真對比,驗證了預測模型能夠取得理想的預測結(jié)果。其次,針對BP神經(jīng)網(wǎng)絡迭代速度慢、易陷入局部極小值等缺陷,提出了基于GSA算法優(yōu)化的多模型BP網(wǎng)絡預測模型,將遺傳算法(GA)的并行搜索結(jié)構(gòu)和模擬退火算法(SA)的概率突跳特性與BP網(wǎng)絡相結(jié)合,對微網(wǎng)負荷做出預測。將優(yōu)化后的預測模型與優(yōu)化前的預測模型做對比,結(jié)果表明,優(yōu)化后的模型預測精度更高。并且通過與其他預測算法比較,進一步驗證了GSA算法優(yōu)化的多模型BP網(wǎng)絡在微網(wǎng)短期負荷預測中的優(yōu)勢。最后,通過分析國外微網(wǎng)負荷的運行情況發(fā)現(xiàn),實時電價因素在一定程度上會影響微網(wǎng)負荷的大小。因此,本文將實時電價因素引入預測模型中。利用模糊控制算法對模型預測后的微網(wǎng)負荷值進行修正。仿真結(jié)果表明,該算法能夠?qū)紤]實時電價因素的預測結(jié)果進行有效地修正。
[Abstract]:With the rapid development of economy in our country, the problem of energy depletion is getting worse and worse. As a kind of clean and friendly energy, microgrid can effectively solve the problem of electricity utilization in remote areas of central and western China, and the cost of electricity transportation is high. Low utilization rate and other problems. Microgrid short-term load forecasting, as a research hotspot in micro-grid, has been paid more and more attention by researchers. The short-term load forecasting of microgrid can provide the guarantee for the energy saving and efficient operation of the micro-grid system, and provide the basis for the power dispatching department to formulate the generation plan. Therefore, it is of great significance to strengthen the load forecasting of microgrid for both microgrid system and large power grid. According to the characteristics of microgrid load, a multi-model neural network short-term load forecasting model based on data mining and genetic simulated annealing algorithm (GSA) is proposed in this paper. The main research work and innovative contents are as follows: firstly, the factors affecting microgrid load, such as meteorology, daily type and actual historical load, are analyzed, and the preliminary sample data of microgrid load forecasting are established according to these factors. The data mining technology is used to mine the sample data, and the basic prediction model is established. The specific processing methods are as follows: (1) the rough set attribute reduction algorithm is used to reduce the sample data to find the core factors that affect the load of the microgrid and take it as the input of the prediction model; (2) according to the characteristics of volatility and randomness of microgrid load, the reduced sample data is analyzed by fuzzy clustering, and the sample data is divided into several categories, and the corresponding BP neural network prediction model is established for each kind of sample. (3) in forecasting the load of microgrid, the pattern recognition technique is used to find the network corresponding to the nearest sample set on the forecasting day, and the network is used to forecast the load of microgrid. The short term load forecasting model of micro grid based on multi-model BP network is established through the above steps. The simulation results show that the prediction model can obtain ideal prediction results. Secondly, aiming at the shortcomings of BP neural network, such as slow iterative speed and easy to fall into local minimum, a multi-model BP network prediction model based on GSA algorithm optimization is proposed. The parallel search structure of genetic algorithm (GA) and the probabilistic jump characteristics of simulated annealing algorithm (SA) are combined with BP network to predict the load of microgrid. The results show that the precision of the optimized model is higher than that of the optimized model. Compared with other prediction algorithms, the advantages of multi-model BP network optimized by GSA algorithm in short-term load forecasting of microgrid are further verified. Finally, by analyzing the operation of microgrid load in foreign countries, it is found that the real time price factor will affect the load of microgrid to some extent. Therefore, this paper introduces the real-time electricity price factor into the prediction model. The fuzzy control algorithm is used to modify the load value of the microgrid after the model prediction. The simulation results show that the algorithm can effectively modify the prediction results considering the real-time price factors.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP311.13;TP18;TM715

【參考文獻】

相關期刊論文 前10條

1 齊庭庭;李建奇;;基于改進機器學習算法的微電網(wǎng)短期負荷預測[J];湖南文理學院學報(自然科學版);2016年03期

2 許志榮;楊蘋;趙卓立;王燦;;中國多微網(wǎng)系統(tǒng)發(fā)展分析[J];電力系統(tǒng)自動化;2016年17期

3 張彥宇;肖茜;;國內(nèi)外關于電力系統(tǒng)負荷預測的研究現(xiàn)狀分析[J];山東工業(yè)技術(shù);2016年11期

4 林順富;郝朝;湯曉棟;李東東;符楊;;基于數(shù)據(jù)挖掘的樓宇短期負荷預測方法研究[J];電力系統(tǒng)保護與控制;2016年07期

5 于洪;王國胤;姚一豫;;決策粗糙集理論研究現(xiàn)狀與展望[J];計算機學報;2015年08期

6 盧鶴挺;;基于多元線性回歸分析的用電量研究[J];中國新技術(shù)新產(chǎn)品;2015年14期

7 李東東;覃子珊;林順富;鄭小霞;王天祥;;基于混沌時間序列法的微網(wǎng)短期負荷預測[J];電力系統(tǒng)及其自動化學報;2015年05期

8 劉念;張清鑫;劉海濤;;基于核函數(shù)極限學習機的微電網(wǎng)短期負荷預測方法[J];電工技術(shù)學報;2015年08期

9 張玲玲;楊明玉;梁武;;微網(wǎng)用戶短期負荷預測相似日選擇算法[J];中國電力;2015年04期

10 趙慧材;陳躍輝;陳瑞先;彭子揚;;結(jié)合模糊粗糙集和支持向量機的電力負荷短期預測方法[J];中國電力;2015年02期

相關博士學位論文 前2條

1 王快妮;支持向量機魯棒性模型與算法研究[D];中國農(nóng)業(yè)大學;2015年

2 王鶴;含多種分布式電源的微電網(wǎng)運行控制研究[D];華北電力大學;2014年

相關碩士學位論文 前10條

1 廖祥賓;基于碳排放約束的能源消費結(jié)構(gòu)優(yōu)化研究[D];江南大學;2016年

2 趙洋;基于數(shù)據(jù)挖掘技術(shù)的南京地區(qū)短期電力負荷預測方法研究[D];華北電力大學;2016年

3 畢圣;基于數(shù)據(jù)挖掘技術(shù)的短期負荷預測[D];北京交通大學;2016年

4 王艷龍;基于數(shù)據(jù)挖掘的中長期電力市場需求分析及預測[D];浙江大學;2016年

5 趙晶;城市電力負荷預測技術(shù)及其在通遼電網(wǎng)中的應用[D];華北電力大學;2015年

6 杜明建;大數(shù)據(jù)技術(shù)在負荷預測與負荷特性分析中的應用[D];東南大學;2015年

7 楊屹洲;基于數(shù)據(jù)挖掘的商業(yè)電力負荷預測及用電優(yōu)化算法研究[D];華僑大學;2015年

8 楊波;基于支持向量機的電力系統(tǒng)短期負荷預測[D];遼寧工業(yè)大學;2015年

9 匙躍軍;曲陽地區(qū)中長期電力負荷預測研究[D];華北電力大學;2015年

10 楊育剛;基于光伏發(fā)電與負荷預測的微電網(wǎng)儲能系統(tǒng)控制策略研究[D];華北電力大學;2015年

,

本文編號:2323341

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2323341.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1cef4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com