基于數(shù)據(jù)挖掘和GSA-BP多模型神經(jīng)網(wǎng)絡的微網(wǎng)短期負荷預測
[Abstract]:With the rapid development of economy in our country, the problem of energy depletion is getting worse and worse. As a kind of clean and friendly energy, microgrid can effectively solve the problem of electricity utilization in remote areas of central and western China, and the cost of electricity transportation is high. Low utilization rate and other problems. Microgrid short-term load forecasting, as a research hotspot in micro-grid, has been paid more and more attention by researchers. The short-term load forecasting of microgrid can provide the guarantee for the energy saving and efficient operation of the micro-grid system, and provide the basis for the power dispatching department to formulate the generation plan. Therefore, it is of great significance to strengthen the load forecasting of microgrid for both microgrid system and large power grid. According to the characteristics of microgrid load, a multi-model neural network short-term load forecasting model based on data mining and genetic simulated annealing algorithm (GSA) is proposed in this paper. The main research work and innovative contents are as follows: firstly, the factors affecting microgrid load, such as meteorology, daily type and actual historical load, are analyzed, and the preliminary sample data of microgrid load forecasting are established according to these factors. The data mining technology is used to mine the sample data, and the basic prediction model is established. The specific processing methods are as follows: (1) the rough set attribute reduction algorithm is used to reduce the sample data to find the core factors that affect the load of the microgrid and take it as the input of the prediction model; (2) according to the characteristics of volatility and randomness of microgrid load, the reduced sample data is analyzed by fuzzy clustering, and the sample data is divided into several categories, and the corresponding BP neural network prediction model is established for each kind of sample. (3) in forecasting the load of microgrid, the pattern recognition technique is used to find the network corresponding to the nearest sample set on the forecasting day, and the network is used to forecast the load of microgrid. The short term load forecasting model of micro grid based on multi-model BP network is established through the above steps. The simulation results show that the prediction model can obtain ideal prediction results. Secondly, aiming at the shortcomings of BP neural network, such as slow iterative speed and easy to fall into local minimum, a multi-model BP network prediction model based on GSA algorithm optimization is proposed. The parallel search structure of genetic algorithm (GA) and the probabilistic jump characteristics of simulated annealing algorithm (SA) are combined with BP network to predict the load of microgrid. The results show that the precision of the optimized model is higher than that of the optimized model. Compared with other prediction algorithms, the advantages of multi-model BP network optimized by GSA algorithm in short-term load forecasting of microgrid are further verified. Finally, by analyzing the operation of microgrid load in foreign countries, it is found that the real time price factor will affect the load of microgrid to some extent. Therefore, this paper introduces the real-time electricity price factor into the prediction model. The fuzzy control algorithm is used to modify the load value of the microgrid after the model prediction. The simulation results show that the algorithm can effectively modify the prediction results considering the real-time price factors.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP311.13;TP18;TM715
【參考文獻】
相關期刊論文 前10條
1 齊庭庭;李建奇;;基于改進機器學習算法的微電網(wǎng)短期負荷預測[J];湖南文理學院學報(自然科學版);2016年03期
2 許志榮;楊蘋;趙卓立;王燦;;中國多微網(wǎng)系統(tǒng)發(fā)展分析[J];電力系統(tǒng)自動化;2016年17期
3 張彥宇;肖茜;;國內(nèi)外關于電力系統(tǒng)負荷預測的研究現(xiàn)狀分析[J];山東工業(yè)技術(shù);2016年11期
4 林順富;郝朝;湯曉棟;李東東;符楊;;基于數(shù)據(jù)挖掘的樓宇短期負荷預測方法研究[J];電力系統(tǒng)保護與控制;2016年07期
5 于洪;王國胤;姚一豫;;決策粗糙集理論研究現(xiàn)狀與展望[J];計算機學報;2015年08期
6 盧鶴挺;;基于多元線性回歸分析的用電量研究[J];中國新技術(shù)新產(chǎn)品;2015年14期
7 李東東;覃子珊;林順富;鄭小霞;王天祥;;基于混沌時間序列法的微網(wǎng)短期負荷預測[J];電力系統(tǒng)及其自動化學報;2015年05期
8 劉念;張清鑫;劉海濤;;基于核函數(shù)極限學習機的微電網(wǎng)短期負荷預測方法[J];電工技術(shù)學報;2015年08期
9 張玲玲;楊明玉;梁武;;微網(wǎng)用戶短期負荷預測相似日選擇算法[J];中國電力;2015年04期
10 趙慧材;陳躍輝;陳瑞先;彭子揚;;結(jié)合模糊粗糙集和支持向量機的電力負荷短期預測方法[J];中國電力;2015年02期
相關博士學位論文 前2條
1 王快妮;支持向量機魯棒性模型與算法研究[D];中國農(nóng)業(yè)大學;2015年
2 王鶴;含多種分布式電源的微電網(wǎng)運行控制研究[D];華北電力大學;2014年
相關碩士學位論文 前10條
1 廖祥賓;基于碳排放約束的能源消費結(jié)構(gòu)優(yōu)化研究[D];江南大學;2016年
2 趙洋;基于數(shù)據(jù)挖掘技術(shù)的南京地區(qū)短期電力負荷預測方法研究[D];華北電力大學;2016年
3 畢圣;基于數(shù)據(jù)挖掘技術(shù)的短期負荷預測[D];北京交通大學;2016年
4 王艷龍;基于數(shù)據(jù)挖掘的中長期電力市場需求分析及預測[D];浙江大學;2016年
5 趙晶;城市電力負荷預測技術(shù)及其在通遼電網(wǎng)中的應用[D];華北電力大學;2015年
6 杜明建;大數(shù)據(jù)技術(shù)在負荷預測與負荷特性分析中的應用[D];東南大學;2015年
7 楊屹洲;基于數(shù)據(jù)挖掘的商業(yè)電力負荷預測及用電優(yōu)化算法研究[D];華僑大學;2015年
8 楊波;基于支持向量機的電力系統(tǒng)短期負荷預測[D];遼寧工業(yè)大學;2015年
9 匙躍軍;曲陽地區(qū)中長期電力負荷預測研究[D];華北電力大學;2015年
10 楊育剛;基于光伏發(fā)電與負荷預測的微電網(wǎng)儲能系統(tǒng)控制策略研究[D];華北電力大學;2015年
,本文編號:2323341
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2323341.html