基于神經(jīng)網(wǎng)絡(luò)的電廠鍋爐故障診斷研究
[Abstract]:With the rapid development of power industry, the application of large power plant boilers is becoming more and more extensive, the structure of boiler system is more complex, and the operation parameters are more and more, and the application of fault diagnosis technology is becoming more and more urgent. Among many fault diagnosis technologies, neural network-based fault diagnosis technology is widely used in power plant system fault diagnosis research because of its strong learning ability, good fault tolerance, fast and convenient, and the ability to deal with complex nonlinear relationships. In the fault diagnosis method based on neural network, the identification and classification of fault features is one of the key steps to affect the safety, reliability and efficiency of fault diagnosis system. Therefore, it is very important to study the accuracy of fault feature identification and classification. In this paper, the fault feature rule is difficult to summarize, the feature knowledge is difficult to be extracted, and the characteristic parameters change quickly when the power plant screen superheater is leaking. In order to overcome the shortcomings of traditional single boiler fault diagnosis method and manual monitoring fault diagnosis, a wavelet neural network fault diagnosis model is designed. The particle swarm optimization (PSO) algorithm is proposed to optimize the network model training parameters. The simulation results of MATLAB show that the fault diagnosis model based on particle swarm optimization wavelet neural network is superior to other algorithms in accuracy and training time. In addition, a probabilistic neural network fault diagnosis model is designed and improved by particle swarm optimization (PSO). An adaptive probabilistic neural network fault diagnosis model is formed and the effectiveness of the improved algorithm is verified by MATLAB simulation. Finally, the configuration monitoring system of power plant fault diagnosis system is designed by using Kingview software, and the data communication between MATLAB and Kingview is established by using OPC technology, and the fault monitoring under MATLAB environment is realized.
【學(xué)位授予單位】:河北科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM621.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫雷;;鍋爐水冷壁泄露原因與防范措施分析[J];科技展望;2015年30期
2 解文強(qiáng);王俠;;火電廠鍋爐運(yùn)行故障診斷分析[J];河南科技;2015年19期
3 樊帥;肖軍;;鍋爐制粉系統(tǒng)故障診斷方法[J];熱力發(fā)電;2015年02期
4 孫曉丹;;鍋爐故障原因分析及處理方法[J];科技致富向?qū)?2015年06期
5 黃中;潘貴濤;張品高;肖平;孫獻(xiàn)斌;;300MW大型循環(huán)流化床鍋爐運(yùn)行分析與發(fā)展建議[J];鍋爐技術(shù);2014年06期
6 馬國軍;;現(xiàn)代電廠鍋爐原理及設(shè)備問題[J];中外企業(yè)家;2014年33期
7 李凡;;電廠鍋爐泄漏原因及其應(yīng)對措施探討[J];科技致富向?qū)?2014年30期
8 白順義;鄭鋒;;火電廠大型鍋爐常見故障分析與處理[J];山東工業(yè)技術(shù);2014年19期
9 李鵬飛;趙明;賽俊聰;丁常富;;300 MW循環(huán)流化床鍋爐動(dòng)態(tài)特性的試驗(yàn)研究[J];熱能動(dòng)力工程;2014年05期
10 高倩;劉乃江;劉寅;劉景新;趙斌;;煤粉鍋爐爆管故障診斷案例分析[J];節(jié)能;2014年09期
相關(guān)博士學(xué)位論文 前2條
1 王洪江;電站鍋爐實(shí)時(shí)故障診斷研究[D];華北電力大學(xué)(北京);2008年
2 董學(xué)育;基于人工神經(jīng)網(wǎng)絡(luò)的故障診斷方法在電站中的應(yīng)用研究[D];東南大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 周沙;基于概率神經(jīng)網(wǎng)絡(luò)的變壓器局部放電模式識(shí)別研究[D];江蘇大學(xué);2016年
2 董沛釗;基于神經(jīng)網(wǎng)絡(luò)的高爐風(fēng)機(jī)運(yùn)行狀況預(yù)測的研究[D];河北科技大學(xué);2015年
3 呂雪冬;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)在電站鍋爐中的應(yīng)用研究[D];安徽大學(xué);2015年
4 劉乃江;電站鍋爐熱管失效診斷與狀態(tài)檢驗(yàn)研究[D];華北理工大學(xué);2015年
5 田立;基于魚群優(yōu)化概率神經(jīng)網(wǎng)絡(luò)算法的研究[D];遼寧大學(xué);2014年
6 張碧夏;基于PSO的小波神經(jīng)網(wǎng)絡(luò)熱連軋板材質(zhì)量模型研究[D];山西師范大學(xué);2014年
7 惠萬春;基于粒子群小波神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測模型研究[D];西安電子科技大學(xué);2014年
8 汪寧姝;鍋爐四管泄漏故障的仿真研究與智能診斷[D];華北電力大學(xué);2014年
9 翟文杰;基于貝葉斯網(wǎng)絡(luò)的鍋爐故障診斷系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
10 羅超;基于多智能體的高爐故障診斷方法研究[D];東北大學(xué);2013年
,本文編號(hào):2308094
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2308094.html