基于極限學(xué)習(xí)機(jī)的風(fēng)電機(jī)組主軸承故障診斷方法研究
[Abstract]:Wind energy is a kind of non-pollution, renewable new energy, so wind power generation has been more and more studied in recent years. However, the working environment of most wind turbine units is poor, and the main bearing is the most important driving part in wind turbine, which plays a supporting and guiding role. If the main bearing fails, the unit will stop running, which will bring great economic loss to the wind farm. Therefore, rapid and effective diagnosis of the main bearing fault of wind turbine is an effective measure to improve the utilization ratio of wind turbine and increase the economic benefit of wind farm. The main contents of this paper are as follows: a wavelet packet energy feature extraction method is presented to extract the eigenvector of the main bearing vibration signal of wind turbine. By comparing the noise reduction effect of different wavelet basis function and threshold function, the optimal denoising combination is selected, and the result of soft threshold processing is better. The wavelet packet energy feature extraction method is used to extract the energy vector of the main bearing vibration signal of wind turbine unit, and the similarity of different fault type characteristic vectors is analyzed, which lays a foundation for the later fault identification. The fault diagnosis method of main bearing of wind turbine based on ultimate learning machine is presented. By comparing the influence of different activation functions on the diagnostic effect of LLM, the optimal activation function is selected. The influence of the parameters of the ultimate learning machine on the diagnostic effect of the ultimate learning machine is analyzed, and the realization process of the diagnosis is given. Compared with the least square support vector machine (LS-SVM) algorithm, the method of main bearing fault diagnosis of wind turbine based on LLM-algorithm is proved to be more effective. The main bearing fault diagnosis method of wind turbine based on nuclear limit learning machine is presented. Genetic algorithm is used to optimize the parameters of the kernel limit learning machine to further improve the diagnostic accuracy. The implementation process of diagnosis is given. By comparing the fault diagnosis confusion matrix based on nuclear extreme learning machine and ultimate learning machine, it is found that the diagnosis effect of nuclear extreme learning machine is better. A fault diagnosis method for main bearing of wind turbine based on hybrid core ultimate learning machine is presented. The mixed kernel function is constructed by using the linear combination of global kernel function and local kernel function to make the kernel function have both global and local properties. The parameters of hybrid kernel ultimate learning machine are optimized by genetic algorithm and cross-validation. The realization process of diagnosis is given. The experiments show that the fault diagnosis method of main bearing of wind turbine based on genetic algorithm and crossover verification optimization is more effective.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚萬業(yè);李新麗;;基于狀態(tài)監(jiān)測的風(fēng)電機(jī)組變槳系統(tǒng)故障診斷[J];可再生能源;2016年03期
2 裴飛;陳雪振;朱永利;遇炳杰;;粒子群優(yōu)化核極限學(xué)習(xí)機(jī)的變壓器故障診斷[J];計算機(jī)工程與設(shè)計;2015年05期
3 黎濤;唐明珠;譚欣星;;基于CLSSVM的風(fēng)電機(jī)組齒輪箱故障診斷[J];可再生能源;2015年02期
4 祁麗婉;梁庚;童國煒;;基于果蠅算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的齒輪箱故障診斷[J];電網(wǎng)與清潔能源;2014年09期
5 韓星;熊靜琪;王李立;秦梟品;;基于小波去噪和最小二乘支持向量機(jī)的滾動軸承故障診斷研究[J];機(jī)床與液壓;2014年09期
6 周真;周浩;馬德仲;張茹;蔣永清;;風(fēng)電機(jī)組故障診斷中不確定性信息處理的貝葉斯網(wǎng)絡(luò)方法[J];哈爾濱理工大學(xué)學(xué)報;2014年01期
7 苑津莎;張利偉;王瑜;尚海昆;;基于極限學(xué)習(xí)機(jī)的變壓器故障診斷方法研究[J];電測與儀表;2013年12期
8 李春曦;王佳;葉學(xué)民;喻橋;;我國新能源發(fā)展現(xiàn)狀及前景[J];電力科學(xué)與工程;2012年04期
9 龍泉;劉永前;楊勇平;;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電機(jī)組齒輪箱故障診斷方法[J];太陽能學(xué)報;2012年01期
10 高虎;黃禾;王衛(wèi);朱順泉;;歐盟可再生能源發(fā)展形勢和2020年發(fā)展戰(zhàn)略目標(biāo)分析[J];可再生能源;2011年04期
相關(guān)博士學(xué)位論文 前1條
1 宋磊;雙饋異步風(fēng)電機(jī)組狀態(tài)監(jiān)測與故障診斷系統(tǒng)的研究[D];華北電力大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 陳雪振;基于極限學(xué)習(xí)機(jī)的變壓器故障預(yù)測方法研究[D];華北電力大學(xué);2015年
2 周浩;基于貝葉斯網(wǎng)絡(luò)風(fēng)機(jī)齒輪箱故障診斷專家系統(tǒng)的研究[D];哈爾濱理工大學(xué);2014年
3 張茹;基于貝葉斯網(wǎng)絡(luò)模型的風(fēng)機(jī)齒輪箱的故障分析診斷[D];哈爾濱理工大學(xué);2014年
4 遇炳杰;基于極限學(xué)習(xí)機(jī)的變壓器故障診斷[D];華北電力大學(xué);2014年
5 申戩林;大型風(fēng)電機(jī)組狀態(tài)監(jiān)測與智能故障診斷系統(tǒng)研究[D];山西大學(xué);2014年
6 劉迎;基于SVM風(fēng)電機(jī)組齒輪箱故障診斷系統(tǒng)研究[D];華北電力大學(xué);2013年
7 張乾;基于振動信號的軸承狀態(tài)監(jiān)測和故障診斷方法研究[D];中南大學(xué);2012年
8 段玲君;基于支持向量機(jī)的同步風(fēng)電機(jī)組故障診斷系統(tǒng)的研究[D];中南大學(xué);2012年
9 王斌;面向風(fēng)電機(jī)組齒輪箱的故障診斷系統(tǒng)研究[D];華北電力大學(xué);2012年
10 胡慶春;基于支持向量機(jī)和統(tǒng)計過程控制的風(fēng)電機(jī)組故障預(yù)測算法的研究[D];華北電力大學(xué);2011年
,本文編號:2308205
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2308205.html