基于K值法的單相四柱式特高壓變壓器的GIC-Q損耗計算
[Abstract]:To master the reactive power (GIC-Q) disturbance derived from GIC infringing transformers is the basis of analyzing the influence of DC bias of transformer GIC and formulating the disaster prevention strategy of geomagnetic storm power network. In view of the single-phase four-column UHV transformer used in 1000kV UHV power network, from the point of view of engineering disaster prevention, the GIC-Q disturbance of UHV main transformer based on K-value algorithm is studied in this paper. The research contents and main conclusions are as follows: (1) the structure and characteristics of the core structure, winding arrangement and voltage regulation compensation of the single-phase four-column UHV transformer designed and manufactured by our country are discussed. The formation mechanism, physical mechanism and influencing factors of GIC-Q loss of single phase four-column transformer are analyzed. The results show that the UHV transformer will occur half-wave saturation, excitation current distortion and increase of reactive power loss under the action of quasi-DC GIC. And the increase of reactive power loss is related to the core structure, operating voltage grade, dynamic inductance, leakage reluctance and other factors. (2) according to the structural parameters and core parameters of UHV transformer, The magnetic circuit-circuit coupling model of 1000kV single-phase four-column UHV main body variable is established. The excitation characteristics and reactive power loss of the transformer are studied. The results show that with the increasing of GIC, the saturation degree of the main variable half-wave is deepening, the distortion of the excitation current is increasing, and the increasing rate of the harmonic is different, combined with the reactive power calculation method. It is obtained that the GIC-Q loss of the main variable is linear with that of the GIC, and the ratio coefficient K of the single-phase four-column main variable is determined to be 2.44. The calculation error is compared to meet the requirements of engineering calculation. (3) the reactive power loss of GIC of different types of transformers is compared and analyzed. The results show that in a certain range, with the increase of GIC, the reactive power loss of GIC with 1000kV single-phase four-column UHV main variable is higher than that of ordinary transformer. Under the same GIC size, the GIC-Q loss of single-phase four-column UHV main variable is higher than that of ordinary single-phase transformer. Therefore, geomagnetic storms in UHV power grids are more likely to cause large GIC-Q fluctuations, which is the focus of the research on geomagnetic storm disaster prevention.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM41
【參考文獻】
相關期刊論文 前10條
1 劉鵬;郭倩雯;楊銘;李正天;林湘寧;全江濤;;抗直流偏磁的變壓器中性點接地方式探討[J];高電壓技術;2015年03期
2 劉連光;郭世曉;魏愷;鄭寬;;基于全節(jié)點模型的三華電網(wǎng)地磁感應電流計算[J];電網(wǎng)技術;2014年07期
3 潘超;王夢純;蔡國偉;姜言金;李鐵峰;;變壓器直流偏磁場路耦合計算中的磁化曲線擬合[J];電力自動化設備;2014年04期
4 鄭寬;劉連光;David H.Boteler;Risto J.Pirjola;;多電壓等級電網(wǎng)的GIC-Benchmark建模方法[J];中國電機工程學報;2013年16期
5 潘超;王澤忠;李海龍;劉連光;張科;郭若穎;;基于瞬態(tài)場路耦合模型的變壓器直流偏磁計算[J];電工技術學報;2013年05期
6 張龍偉;吳廣寧;范建斌;曹曉斌;黃渤;;基于Jiles-Atherton磁滯理論三相三柱變壓器直流偏磁的電磁混合模型[J];華東電力;2013年04期
7 潘超;王澤忠;楊敬t@;劉連光;;變壓器直流偏磁瞬態(tài)場路耦合計算的穩(wěn)定性分析[J];電工技術學報;2012年12期
8 王澤忠;潘超;周盛;劉連光;;基于棱邊有限元的變壓器場路耦合瞬態(tài)模型[J];電工技術學報;2012年09期
9 趙小軍;李琳;程志光;魯君偉;盧鐵兵;劉蘭榮;范亞娜;;基于直流偏磁實驗的疊片鐵心磁化特性分析[J];電工技術學報;2011年01期
10 黃晶晶;徐習東;曾平;馬豐華;;電力變壓器鐵心的非線性磁化特性[J];高電壓技術;2010年10期
相關博士學位論文 前3條
1 潘超;基于時域場路耦合模型的變壓器直流偏磁電磁特性研究[D];華北電力大學;2013年
2 張冰;大型電力變壓器的GIC影響效應研究[D];華北電力大學(北京);2010年
3 劉春明;中低緯電網(wǎng)地磁感應電流及其評估方法研究[D];華北電力大學(北京);2009年
相關碩士學位論文 前2條
1 秦曉培;基于變壓器V-I曲線的GIC無功損耗模型與算法研究[D];華北電力大學;2015年
2 李貞;直流偏磁條件下電力變壓器的磁化機制與建模方法研究[D];山東大學;2011年
,本文編號:2308068
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2308068.html