電能替代下的家居智能用電控制策略研究
[Abstract]:In recent years, the problem of haze is becoming more and more serious in China, and the substitution of electric energy is an effective measure to alleviate the problem of air pollution. With the development of electric power substitution and intelligent electricity-related technology, it is possible to optimize the control of residential electrical appliances. By analyzing the power consumption behavior of the residents, and then putting forward the corresponding power consumption optimization strategy, the purpose of cutting the peak and filling the valley and absorbing the new energy can be achieved. Firstly, based on the traditional time-sharing pricing mechanism and the electricity supply mode of electricity marketization, this paper analyzes the structure, interactive mode and implementation mechanism of residential intelligent electricity consumption. Then, the characteristics of household users' electricity consumption behavior are analyzed, and the main influencing factors of household users' electricity consumption behavior are extracted. On the basis of this analysis, a prediction method of user's electricity behavior based on support vector regression machine is proposed, and the simulation results show that this method can accurately predict the time when different users begin to use electrical appliances. Based on the analysis and prediction of user behavior, this paper studies the optimal control strategy of household intelligent power consumption under the traditional time-sharing pricing mechanism. This paper summarizes and analyzes the related research results of the existing intelligent power use optimization strategy, puts forward the concept of household appliance usage correlation degree and establishes the household appliance usage correlation degree matrix. Furthermore, a cost minimization algorithm is established with the aim of minimizing the user's electricity cost. The simulation results show that the algorithm can effectively reduce the user's electricity cost and improve the user's load curve while ensuring the user's normal electricity consumption. Finally, this paper puts forward a new power supply mode in the electricity market environment. The user authorizes the control of the appliance to the load aggregator and receives the subsidy from the load aggregator, and the load aggregator can uniformly regulate the same load of a large number of authorized loads. In this paper, a load group control strategy based on genetic algorithm is proposed, and an example of electric vehicle is given to verify the algorithm. The simulation results show that the algorithm can reduce the peak and fill the valley and absorb the new energy on the premise that the user's electricity is not affected.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM76
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高賜威;董力;孫玲玲;蘇衛(wèi)華;;售電側(cè)放開下的需求響應(yīng)[J];供用電;2017年03期
2 霍沫霖;何勝;;電力市場化改革對需求響應(yīng)的影響[J];供用電;2017年03期
3 裴海波;李德智;韓婉嬌;郭萬祝;;面向新能源消納的電能替代技術(shù)[J];電力需求側(cè)管理;2016年06期
4 孫毅;許鵬;單葆國;祁兵;;售電側(cè)改革背景下“互聯(lián)網(wǎng)+”電能替代發(fā)展路線[J];電網(wǎng)技術(shù);2016年12期
5 李作鋒;;江蘇電能替代的研究與實(shí)踐[J];電力需求側(cè)管理;2016年05期
6 孫毅;周爽;單葆國;賈德香;曹f ;;多情景下的電能替代潛力分析[J];電網(wǎng)技術(shù);2017年01期
7 白楊;李昂;夏清;;新形勢下電力市場營銷模式與新型電價體系[J];電力系統(tǒng)保護(hù)與控制;2016年05期
8 梁曉麗;盧文冰;周海明;;能源轉(zhuǎn)型中的電能替代[J];智能電網(wǎng);2015年12期
9 付蔚;敬章浩;羅志勇;黃修謀;吳有義;;基于分時電價的智能家電控制方案[J];電網(wǎng)技術(shù);2015年03期
10 趙莉;候興哲;胡君;傅宏;孫洪亮;;基于改進(jìn)k-means算法的海量智能用電數(shù)據(jù)分析[J];電網(wǎng)技術(shù);2014年10期
相關(guān)博士學(xué)位論文 前1條
1 李秋碩;電動汽車接入電網(wǎng)的電能有序利用模型與控制策略研究[D];華北電力大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 魯針針;考慮智能家電與分布式電源的電力需求響應(yīng)技術(shù)研究[D];東南大學(xué);2015年
2 寧陽天;基于削峰填谷的儲能系統(tǒng)調(diào)度模型研究[D];華北電力大學(xué);2015年
3 陳俊生;面向智能用電的需求響應(yīng)技術(shù)及家庭用戶用電策略研究[D];重慶大學(xué);2014年
4 劉寶石;基于需求響應(yīng)的家庭用電負(fù)荷控制策略研究[D];哈爾濱理工大學(xué);2014年
5 吳偉坡;基于實(shí)時電價的智能家庭能源優(yōu)化控制[D];上海交通大學(xué);2013年
6 鐘童科;大規(guī)模電動汽車的充放電行為及其對電網(wǎng)的影響研究[D];華南理工大學(xué);2012年
,本文編號:2304402
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2304402.html