電動(dòng)汽車用無刷直流電機(jī)控制技術(shù)研究
[Abstract]:Electric vehicles have the characteristics of clean and pollution-free, diversified energy sources, high energy efficiency, and easy to realize intelligent management, which can solve a series of problems such as energy, environment and traffic caused by fuel vehicles. Therefore, electric vehicle has become a research hotspot all over the world. Electric vehicle technology in China is still in its infancy, all key technologies need to be studied and solved. Motor and its control technology is one of the key technologies of electric vehicle, which is the first problem to be solved in the research and development of electric vehicle. In this paper, the research object is brushless DC motor, and the control system is designed to make the motor run smoothly and reduce its fluctuation and noise. Firstly, the basic structure of DC brushless motor is analyzed in this paper. According to the mathematical modeling, combined with the application requirement and application range of electric vehicle motor, the simulation model is established in the MATLAB/Simulink simulation platform. The advanced PID algorithm is applied to the established simulation model. Finally, experiments show that the advanced PID algorithm can effectively improve the stability and robustness of the system. On the basis of the completion of the paper. The main work and conclusions are as follows: (1) the application of radial basis function neural network (PID) in brushless DC motor control is simulated by using MATLAB. It is proved that radial basis function neural network (PID) is superior to simple PID in control performance. Obviously, in the aspect of dynamic index, the overshoot is obviously reduced, the frequency of oscillation, the adjustment time and the rising time are shortened. In the aspect of steady-state performance, the change of adjusting time is not obvious. It is proved that the radial basis function neural network PID is superior to the simple PID control performance. (2) Freescale's MC56F801X series chips are used as the core of the main control circuit, and the DRV8301 chip is used in the drive circuit. The hardware foundation of the brushless DC motor control system is composed. In software, the main program and interrupt program of the system are compiled by using the platform CCS,. Finally, the validity of the above method is verified by the combination of software and hardware. (3) the experiment proves that the method is effective. The control strategy of brushless DC motor presented in this paper is correct and feasible. The hardware of the control system is simple, the reliability and robustness of the system are improved, and the control effect is good. The work in this paper provides a certain theoretical reference and practical engineering method for the wide application of brushless DC motor.
【學(xué)位授予單位】:河北科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM33;U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧元望;曾俊;高洋;鄭潮雄;;BLDCM自調(diào)整比例因子模糊控制系統(tǒng)的建模及仿真[J];微電機(jī);2016年01期
2 劉慧博;王靜;吳彥合;;無刷直流電機(jī)模糊自適應(yīng)PID控制研究與仿真[J];控制工程;2014年04期
3 趙一衡;顧偉康;陳亞彬;曹翔;;無刷直流電機(jī)轉(zhuǎn)子位置檢測方法綜述[J];機(jī)械研究與應(yīng)用;2014年02期
4 王志春;宋吉慶;孫建國;邊長安;;永磁無刷直流電機(jī)無位置傳感器控制方法研究[J];工業(yè)控制計(jì)算機(jī);2014年03期
5 張洪帥;王平;韓邦成;;基于模糊PI模型參考自適應(yīng)的高速永磁同步電機(jī)轉(zhuǎn)子位置檢測[J];中國電機(jī)工程學(xué)報(bào);2014年12期
6 辛斌;陳杰;彭志紅;;智能優(yōu)化控制:概述與展望[J];自動(dòng)化學(xué)報(bào);2013年11期
7 石堅(jiān);李鐵才;;一種消除無刷直流電動(dòng)機(jī)換相轉(zhuǎn)矩脈動(dòng)的PWM調(diào)制策略[J];中國電機(jī)工程學(xué)報(bào);2012年24期
8 任晶瑩;姚緒梁;蔡晶;趙云凱;;基于神經(jīng)網(wǎng)絡(luò)控制器的直流無刷電動(dòng)機(jī)控制研究[J];農(nóng)機(jī)化研究;2012年06期
9 朱穎合;薛凌云;黃偉;;基于自組織調(diào)整因子的模糊PID控制器設(shè)計(jì)[J];系統(tǒng)仿真學(xué)報(bào);2011年12期
10 徐麗麗;何志琴;馬凱;;無刷直流電機(jī)新型控制方案的仿真研究[J];工業(yè)控制計(jì)算機(jī);2011年05期
相關(guān)碩士學(xué)位論文 前7條
1 徐承愛;無刷直流電機(jī)智能控制策略的研究與仿真[D];廣東工業(yè)大學(xué);2015年
2 趙朋成;無刷直流電機(jī)的無位置傳感器控制技術(shù)研究[D];華南理工大學(xué);2014年
3 陳錕;無刷直流電機(jī)智能直接轉(zhuǎn)矩控制研究[D];昆明理工大學(xué);2013年
4 鄒月海;基于模糊控制的永磁無刷直流電機(jī)調(diào)速系統(tǒng)研究[D];哈爾濱工程大學(xué);2009年
5 包曉明;基于DSP的無刷直流電機(jī)模糊PI控制系統(tǒng)研究[D];江蘇大學(xué);2007年
6 戴瑩;基于BP神經(jīng)網(wǎng)絡(luò)的無刷直流電機(jī)PID控制方法的研究[D];合肥工業(yè)大學(xué);2007年
7 李志強(qiáng);基于RBF神經(jīng)網(wǎng)絡(luò)在線辨識(shí)的永磁無刷直流電機(jī)單神經(jīng)元自適應(yīng)PID控制[D];天津大學(xué);2005年
,本文編號(hào):2271269
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2271269.html