基于WRF的DBN風(fēng)速預(yù)測與并行優(yōu)化研究
[Abstract]:High precision wind speed prediction is of great significance to wind power development. At present, the researches on wind speed prediction are mainly focused on two aspects: first, the mesoscale numerical model is used for wind speed prediction, but due to the large amount of calculation, it has the limitations of long calculation time and hardware equipment. And the prediction effect of single mesoscale model can no longer meet the demand of current forecast precision, so it is necessary to further introduce learning model to revise and forecast the predicted wind speed. Secondly, the learning model is used to predict the wind speed. Most of the current learning methods are shallow machine learning, with limited learning ability, and the prediction accuracy needs to be further improved, while the depth learning model has deeper learning ability and can better describe the target object. In view of this, in order to optimize the mesoscale WRF (Weather Research and Forecast, weather research and forecast model in parallel and improve the accuracy of wind speed prediction, The main work of this paper is as follows: (1) the wind speed prediction effect of WRF model is evaluated. Firstly, the wind model of WRF is simulated with the topographic data of modified altitude. The results show that the modified data have a certain influence on the WRF model under the complex terrain such as mountainous area. Based on the actual wind data obtained from a 70 m high wind tower under a simple terrain, the forecasted results of the four meteorological elements such as air pressure, air temperature, wind speed and wind direction after recalculating the WRF model are comprehensively detected and analyzed. The results show that the prediction of WRFmodel and the measured data have a certain overall correlation and accord with the demand of establishing DBN (Deep Belief Nets, depth belief network) wind speed prediction model. (2) parallel optimization of WRF model: the multi-machine multi-core cluster and the small cluster are built respectively. Two parallel computing platforms for tower workstations, Three parallel methods are used to simulate and calculate the WRF mode, and the parallel efficiency, speedup ratio, price and other parameters are used to compare and analyze the parallel mode and the computing platform, respectively, and the parallel efficiency, speedup ratio, price and other parameters are used to compare and analyze the parallel mode and the computing platform. So that users can reasonably select a more efficient parallel mode and computing platform according to the needs of computing. (3) build the DBN wind speed prediction model based on WRF: to improve the accuracy of WRF model wind speed prediction, The depth learning model (DBN,) is introduced. The model has the advantages of unsupervised learning and supervised learning. The depth belief network is trained layer by using the wind speed prediction results of WRF model and the measured data as input. A DBN wind speed prediction model based on WRF is constructed and simulated. The above experiments verify the validity and applicability of this paper to the parallel optimization of WRF model, and prove that the wind speed prediction model constructed in this paper has deeper learning ability. Higher prediction accuracy and more application are obtained.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM614
【參考文獻】
相關(guān)期刊論文 前10條
1 葉小嶺;劉波;鄧華;肖寅;;基于小波分析和PSO優(yōu)化神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率預(yù)測[J];可再生能源;2014年10期
2 于鳳鳴;李喜倉;宋進華;高春香;卓義;;基于中尺度模式與神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率預(yù)測[J];氣象科技;2013年04期
3 祝贏;柳艷香;程興宏;宋麗莉;黃鳳新;;線性滾動極值處理方法對數(shù)值模擬風(fēng)速的訂正研究[J];熱帶氣象學(xué)報;2013年04期
4 楊茂;馬秀達;溫道揚;莊明振;王文靜;;風(fēng)電功率預(yù)測研究綜述[J];電測與儀表;2013年07期
5 XIU ChunBo;GUO FuHui;;Wind speed prediction by chaotic operator network based on Kalman Filter[J];Science China(Technological Sciences);2013年05期
6 汪君;王會軍;;WRF模式對江蘇如東地區(qū)風(fēng)速預(yù)報的檢驗分析[J];氣候與環(huán)境研究;2013年02期
7 黃鳳新;劉壽東;祝贏;柳艷香;;基于滾動極值處理的BP神經(jīng)網(wǎng)絡(luò)方法的WRF模式預(yù)報風(fēng)速訂正[J];科學(xué)技術(shù)與工程;2013年07期
8 李俊醅;莊子波;;WRF模式在LINUX集群系統(tǒng)的并行計算與評測[J];計算機技術(shù)與發(fā)展;2012年07期
9 鄧小花;魏立新;;運用神經(jīng)網(wǎng)絡(luò)方法對WRF數(shù)值模擬結(jié)果的初步釋用[J];海洋預(yù)報;2011年06期
10 羅文;王莉娜;;風(fēng)場短期風(fēng)速預(yù)測研究[J];電工技術(shù)學(xué)報;2011年07期
相關(guān)會議論文 前3條
1 閆炎;王廷芳;董海萍;王奇;;高時空分辨率天氣預(yù)報模式在超級計算平臺的性能測試分析[A];第32屆中國氣象學(xué)會年會S3 軍用數(shù)值天氣預(yù)報技術(shù)及應(yīng)用[C];2015年
2 萬杰;胡清華;劉金福;蘇鵬宇;于達仁;;基于深度學(xué)習(xí)理論的短期風(fēng)速多步預(yù)測方法研究[A];智能化電站技術(shù)發(fā)展研討暨電站自動化2013年會論文集[C];2013年
3 楊仁勇;林建興;翁小芳;王凡;李云艷;;用微機集群并行方式運轉(zhuǎn)WRF模式[A];2006年華南地區(qū)學(xué)術(shù)交流會論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 靳雙龍;中尺度WRF模式在風(fēng)電功率預(yù)測中的應(yīng)用研究[D];蘭州大學(xué);2013年
相關(guān)碩士學(xué)位論文 前4條
1 肖寅;基于WRF模式的短期風(fēng)速預(yù)測及訂正方法研究[D];南京信息工程大學(xué);2016年
2 雷慶坤;風(fēng)電場風(fēng)速預(yù)測模型研究[D];合肥工業(yè)大學(xué);2015年
3 蘇鵬宇;考慮風(fēng)速變化模式的風(fēng)速預(yù)報方法研究[D];哈爾濱工業(yè)大學(xué);2013年
4 楊江平;基于神經(jīng)網(wǎng)絡(luò)組合預(yù)測的風(fēng)電場風(fēng)速及發(fā)電功率短期預(yù)測[D];重慶大學(xué);2012年
,本文編號:2259017
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2259017.html