基于不確定測度的電力系統(tǒng)抗差狀態(tài)估計
[Abstract]:With the rapid development of power information physical system, accurate prediction of power system, precise decision-making and accurate control become necessary requirements, which depends on accurate data. As a data filter, the state estimation module is the foundation and core of the energy management system. The traditional weighted least square state estimation method and the residual based bad data identification method have limited ability to identify the strong correlation multi-bad data. It can not fully meet the requirements of increasing production application and safety. The robust performance and computational efficiency of power system state estimation need to be improved urgently. The main work of this paper is as follows: (1) based on the uncertainty measure, the normal point, the abnormal point, the normal rate of measurement point are redefined. Furthermore, a new evaluation index of state estimation results, which takes into account the normal rate of measurement points and the degree of deviation from the true value, is proposed. It can be applied to the situation where the true value is known or unknown. (2) based on the evaluation index which takes into account the normal rate and deviation of the measured point, the participation function and the state estimation criterion function of the normal measuring point are defined. On this basis, a method for estimating the maximum normal rate and minimum deviation degree, (MNLD)., is proposed. This method is a multiobjective programming model with the maximum normal rate and minimum deviation of normal measuring points as the objective, which theoretically ensures the high rationality of the estimated results. (3) in order to make the MNLD model suitable for practical solution, In this paper, the equivalent transformation of 3 points is made. 1) the multiobjective programming of SE is transformed into a single objective programming problem by the goal programming method. 2) the hyperbolic tangent rectangular pulse (RPF) is used to replace the participation function of normal measuring points. 3) the improved condensate function is used to approximate max (7) (8). The inner point method is used to solve the problem. (4) the convergence test of MNLD method and the existing state estimation method is carried out. Simulation experiments on robust performance, computational efficiency and so on. A large number of examples show that the MNLD method has good performance in robustness and computational efficiency.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM732;TM711
【參考文獻】
相關期刊論文 前10條
1 劉東;盛萬興;王云;陸一鳴;孫辰;;電網(wǎng)信息物理系統(tǒng)的關鍵技術(shù)及其進展[J];中國電機工程學報;2015年14期
2 陳艷波;馬進;文一宇;;一種電力系統(tǒng)量測噪聲自適應抗差狀態(tài)估計方法[J];電力系統(tǒng)自動化;2015年08期
3 常乃超;王彬;何光宇;辛耀中;張智剛;;以測點正常率最大為目標的狀態(tài)估計改進算法[J];電力系統(tǒng)自動化;2014年11期
4 亓俊健;何光宇;梅生偉;顧志東;;電力系統(tǒng)抗差狀態(tài)估計研究綜述[J];電工電能新技術(shù);2011年03期
5 何光宇;董樹鋒;;基于測量不確定度的電力系統(tǒng)狀態(tài)估計 (三)算法比較[J];電力系統(tǒng)自動化;2009年21期
6 何光宇;董樹鋒;;基于測量不確定度的電力系統(tǒng)狀態(tài)估計 (二)方法研究[J];電力系統(tǒng)自動化;2009年20期
7 何光宇;董樹鋒;;基于測量不確定度的電力系統(tǒng)狀態(tài)估計 (一)結(jié)果評價[J];電力系統(tǒng)自動化;2009年19期
8 張艷軍;施毅斌;周蘇荃;;新息圖狀態(tài)估計分塊算法[J];哈爾濱工程大學學報;2008年11期
9 周蘇荃;張艷軍;;新息圖狀態(tài)估計中多相關不良數(shù)據(jù)辨識[J];電力系統(tǒng)及其自動化學報;2008年04期
10 孫宏斌,高峰,張伯明,楊瀅;最小信息損失狀態(tài)估計中潮流和拓撲統(tǒng)一估計的通用理論[J];中國電機工程學報;2005年17期
,本文編號:2254628
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2254628.html