基于改進集成學習算法的風機齒輪箱故障診斷與狀態(tài)監(jiān)測研究
[Abstract]:With the rapid development of global new energy technology and the increasing proportion of wind power, the importance and urgency of fan fault diagnosis and condition monitoring are becoming more and more obvious. In order to improve the reliability of fan gearbox, this paper focuses on the fault diagnosis and condition monitoring method of fan gearbox, and respectively studies the fan gearbox gear, bearing and oil temperature. Based on the combination of integrated learning, artificial bee colony algorithm and improved artificial bee colony algorithm, the fault diagnosis and condition monitoring of fan gearbox are studied in this paper. Combined with the research method, the software and hardware design of fan fault diagnosis and condition monitoring system is carried out, mainly in the following four aspects. (1) the mechanism of fan gearbox fault formation is studied, and the gears collected on the experimental platform are used. The vibration signal of bearing is firstly de-noised by wavelet packet transform, then the time domain eigenvalue is extracted from the signal after denoising, then the frequency domain signal is obtained by fast Fourier transform of the time domain signal, and then the frequency domain characteristic value is extracted. Finally, the time-domain and frequency-domain eigenvalues are normalized to provide a good basis for fault diagnosis in the following chapters. (2) the pitting corrosion of the gears in the fan gearbox, gear tooth breaking, bearing inner ring damage and bearing outer ring damage are diagnosed. A fault diagnosis method of selective neural network ensemble algorithm (ABCSEN) based on artificial bee colony algorithm is proposed. Firstly, the UCI data set is used to verify that the ABCSEN presented in this paper is superior to GASEN and Bagging, in accuracy and efficiency. Then the ABCSEN is trained with the historical fault data of the gearbox to obtain the fault diagnosis model. Finally, the new fault diagnosis model is tested with the new fault data. The results show that the model has good diagnostic effect. (3) based on the oil temperature data of fan gear box, the method of monitoring the condition of gear box is studied. The improved ABCSEN, (selective neural network ensemble algorithm (MCABCSEN), based on dynamic Cauchy swarm algorithm) is proposed firstly. Then the superiority of the improved algorithm is verified by using the test function. Finally, the new algorithm is trained and tested by using the oil temperature data of the gear box of a certain wind field in the south and the fault oil temperature data of the gear box fitted artificially. The results show that the new algorithm is sensitive to state monitoring. It can warn the fault in advance and warn the staff in time to prevent the loss from increasing further. (4) based on the method of fault diagnosis and condition monitoring, a fault diagnosis and condition monitoring system for fan gearbox is built. The design of system hardware and software is explained in detail, and the design scheme is verified by experiments.
【學位授予單位】:上海電機學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM315
【參考文獻】
相關(guān)期刊論文 前10條
1 ;2015年中國風電裝機容量統(tǒng)計[J];風能;2016年02期
2 ;2015年全球風電裝機統(tǒng)計[J];風能;2016年02期
3 謝全民;曲廣建;鐘明壽;朱振海;曹宏安;高英;;提升小波包變換技術(shù)在工程爆破遠程測振系統(tǒng)中的應(yīng)用研究[J];爆破;2015年03期
4 王桐;曲桂雪;;基于柯西分布量子粒子群的混合推薦算法[J];中南大學學報(自然科學版);2015年08期
5 吳光文;王昌明;包建東;陳勇;胡揚坡;;基于自適應(yīng)閾值函數(shù)的小波閾值去噪方法[J];電子與信息學報;2014年06期
6 馬宏忠;時維俊;韓敬東;陳繼寧;陳濤濤;;計及轉(zhuǎn)子變換器控制策略的雙饋風力發(fā)電機轉(zhuǎn)子繞組故障診斷[J];中國電機工程學報;2013年18期
7 陽同光;蔣新華;付強;;混合蛙跳脊波神經(jīng)網(wǎng)絡(luò)觀測器電機故障診斷研究[J];儀器儀表學報;2013年01期
8 趙洪山;胡慶春;李志為;;基于統(tǒng)計過程控制的風機齒輪箱故障預測[J];電力系統(tǒng)保護與控制;2012年13期
9 易正俊;何榮花;侯坤;;量子位Bloch坐標的量子人工蜂群優(yōu)化算法[J];計算機應(yīng)用;2012年07期
10 苗銳;陳國初;李月;徐余法;俞金壽;;基于隨機集含糊證據(jù)的風力發(fā)電機故障診斷方法[J];電力系統(tǒng)自動化;2012年07期
相關(guān)博士學位論文 前4條
1 宋磊;雙饋異步風電機組狀態(tài)監(jiān)測與故障診斷系統(tǒng)的研究[D];華北電力大學;2015年
2 徐強;風電機組傳動鏈狀態(tài)診斷方法研究[D];華北電力大學;2015年
3 李敏通;柴油機振動信號特征提取與故障診斷方法研究[D];西北農(nóng)林科技大學;2012年
4 王冬云;轉(zhuǎn)子-軸承故障診斷方法研究[D];燕山大學;2012年
相關(guān)碩士學位論文 前10條
1 孫建;滾動軸承振動故障特征提取與壽命預測研究[D];大連理工大學;2015年
2 龐震;基于小波包分析的滾動軸承故障診斷[D];內(nèi)蒙古科技大學;2014年
3 李嬌嬌;基于粗集—神經(jīng)網(wǎng)絡(luò)的風電機組狀態(tài)評估及齒輪箱異常預警[D];華僑大學;2014年
4 張秀云;基于齒輪箱數(shù)據(jù)處理的故障預警與診斷系統(tǒng)[D];河北工業(yè)大學;2014年
5 徐穎劍;風電機組發(fā)電機故障分析診斷[D];華北電力大學;2013年
6 張任;基于振動信號的齒輪箱智能故障診斷方法研究[D];北京化工大學;2013年
7 賴達波;某齒輪箱故障振動信號特征提取及分析技術(shù)研究[D];電子科技大學;2013年
8 李淋淋;風力發(fā)電機組非參數(shù)模型狀態(tài)監(jiān)測關(guān)鍵問題研究[D];華北電力大學;2013年
9 張小田;基于回歸分析的風機主要部件的故障預測方法研究[D];華北電力大學;2013年
10 王斐斐;基于狀態(tài)監(jiān)測信息的風電機組齒輪箱故障預測研究[D];華北電力大學;2012年
,本文編號:2253567
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2253567.html