基于大數(shù)據(jù)的用戶用電特性研究
[Abstract]:In recent years, the construction of smart grid has developed rapidly. At the same time, a set of perfect power user information collection system has been built, which will provide massive raw data for data analysis. Because China has a large number of power systems, the order of data will reach PB level or even TB level, the traditional technology is difficult to deal with this level of data, need to use the emerging big data technology to carry out related analysis. In today's society data is the most important wealth, there is a variety of information hidden in the data, through the analysis of these data can get more valuable information, so that these data play a greater role. Based on the analysis of the relevant data of the user's electricity consumption, this paper obtains the relevant characteristics of the user's electricity consumption, and forecasts the load of the user's future power consumption data. Firstly, the related concepts of data mining are introduced, which provides a method for data preprocessing. In the face of massive user data, this paper introduces the common big data processing framework Hadoop and Spark, at the same time set up a related cluster, which provides a data analysis platform for big data processing. Then, the clustering technology of data mining is applied to big data analysis platform to cluster the daily load of users, get the daily load curve of users and study the load curve. Because the user's sample dimension is high and the effect of the traditional clustering method is not ideal, this paper improves on the spectral clustering to obtain the power iteration clustering. The power iteration clustering is applied to the data analysis and implemented on the Spark platform. Finally, the power consumption characteristics of the relevant users can be well obtained. Finally, load forecasting is implemented by combining local weighting algorithm with Hadoop platform, and compared with real load, the validity and application of this method in power big data are verified.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13;TM715
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙軍;徐曉燕;;基于GraphX的分布式冪迭代聚類[J];計(jì)算機(jī)應(yīng)用;2016年10期
2 劉思;李林芝;吳浩;孫維真;傅旭華;葉承晉;黃民翔;;基于特性指標(biāo)降維的日負(fù)荷曲線聚類分析[J];電網(wǎng)技術(shù);2016年03期
3 孫藝新;;電力大數(shù)據(jù)應(yīng)用模式與前景分析[J];中國(guó)電力企業(yè)管理;2015年17期
4 王繼業(yè);;大數(shù)據(jù)在電網(wǎng)企業(yè)的應(yīng)用探索[J];中國(guó)電力企業(yè)管理;2015年17期
5 陳華軍;;大數(shù)據(jù)變革——南方電網(wǎng)大數(shù)據(jù)應(yīng)用探索[J];中國(guó)電力企業(yè)管理;2015年17期
6 黎文陽(yáng);;大數(shù)據(jù)處理模型Apache Spark研究[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2015年08期
7 張素香;趙丙鎮(zhèn);王風(fēng)雨;張東;;海量數(shù)據(jù)下的電力負(fù)荷短期預(yù)測(cè)[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年01期
8 張沛;;電力大數(shù)據(jù)應(yīng)用現(xiàn)狀及前景[J];電氣時(shí)代;2014年12期
9 劉莉;王剛;翟登輝;;k-means聚類算法在負(fù)荷曲線分類中的應(yīng)用[J];電力系統(tǒng)保護(hù)與控制;2011年23期
10 李天云;李想;劉輝軍;王洪濤;;基于譜聚類的電力負(fù)荷分類[J];吉林電力;2008年05期
相關(guān)碩士學(xué)位論文 前9條
1 陳曉康;基于Spark 云計(jì)算平臺(tái)的改進(jìn)K近鄰算法研究[D];廣東工業(yè)大學(xué);2016年
2 陳琦;基于Hadoop的電力大數(shù)據(jù)特征分析研究[D];華北電力大學(xué)(北京);2016年
3 孫兵率;基于MapReduce的數(shù)據(jù)挖掘算法并行化研究與應(yīng)用[D];西安工程大學(xué);2015年
4 杜明建;大數(shù)據(jù)技術(shù)在負(fù)荷預(yù)測(cè)與負(fù)荷特性分析中的應(yīng)用[D];東南大學(xué);2015年
5 袁超;短期電力負(fù)荷混合預(yù)測(cè)模型研究[D];蘭州大學(xué);2015年
6 李雄;面向大數(shù)據(jù)的聚類挖掘算法研究[D];南京郵電大學(xué);2014年
7 趙碩;云計(jì)算和機(jī)器學(xué)習(xí)算法在電力負(fù)荷預(yù)測(cè)中的研究與應(yīng)用[D];華北電力大學(xué);2014年
8 虞樂(lè);基于Hadoop平臺(tái)下回歸算法的性能研究[D];南華大學(xué);2012年
9 李軍華;云計(jì)算及若干數(shù)據(jù)挖掘算法的MapReduce化研究[D];電子科技大學(xué);2010年
,本文編號(hào):2248737
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2248737.html