天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

石墨相氮化碳的功能化及其在聚合物太陽(yáng)能電池和光催化中的應(yīng)用

發(fā)布時(shí)間:2018-09-01 07:19
【摘要】:聚合物太陽(yáng)能電池是一種基于有機(jī)光活性材料的光伏器件,因具有制備工藝簡(jiǎn)單、成本低、重量輕且可大規(guī)模制備成柔性器件等優(yōu)點(diǎn)而備受青睞。石墨相氮化碳因其特殊的電子能帶結(jié)構(gòu)以及良好的物理化學(xué)穩(wěn)定性等特點(diǎn),在光催化領(lǐng)域已經(jīng)得到了廣泛的應(yīng)用,而在聚合物太陽(yáng)能電池中卻鮮有報(bào)道。本論文以探索石墨相氮化碳(g-C_3N_4)在聚合物太陽(yáng)能電池中的應(yīng)用以及提升其光催化性能為出發(fā)點(diǎn),集中于對(duì)g-C_3N_4進(jìn)行簡(jiǎn)單的功能化以拓展其應(yīng)用,主要開(kāi)展了以下四個(gè)方面的工作:(1)為提高g-C_3N_4在鄰二氯苯溶劑中的分散性,我們首先通過(guò)溶劑熱法制備了可溶液加工的C_3N_4量子點(diǎn),然后將其摻雜到P3HT:PC61BM,PBDTTT-C:PC_(71)BM和PTB7-Th:PC_(71)BM三種不同光活性層體系中。所獲得的反型體相異質(zhì)結(jié)聚合物太陽(yáng)能電池的能量轉(zhuǎn)換效率分別達(dá)到了 4.23%,6.36%和9.18%,相對(duì)于未摻雜的參比電池器件分別提升了約17.5%,11.6%和11.8%,這一提升主要來(lái)源于短路電流(Jsc)的提升。通過(guò)對(duì)C_3N_4量子點(diǎn)摻雜前后活性層薄膜的表面形貌,光吸收和光致發(fā)光性質(zhì)以及電池器件的電荷傳輸性質(zhì)等一系列表征,表明C_3N_4量子點(diǎn)的摻雜改善了光活性層的形貌以及電荷在活性層及界面的分離和傳輸,從而提升了電池器件的性能。(2)為拓展g-C_3N_4在聚合物太陽(yáng)能電池中的應(yīng)用,我們通過(guò)改變?nèi)軇岱ㄋ褂玫娜軇?制備出了極性溶劑N,N-二甲基甲酰胺(DMF)中分散性較好的C_3N_4量子點(diǎn),然后將其旋涂在ZnO薄膜上用于修飾ZnO電子傳輸層,在此基礎(chǔ)上制備的基于 PBDTTT-C:PC_(71)BM,PTB7:PC_(71)BM 和 PTB7-Th:PC_(71)BM 三種不同光活性層體系的反型體相異質(zhì)結(jié)聚合物太陽(yáng)能電池的能量轉(zhuǎn)換效率分別達(dá)到了7.03%,8.47%和9.29%,與基于未修飾的ZnO參比電池器件相比分別提升了約20.0%,12.2%和11.1%。電池器件的提升主要來(lái)源于短路電流(Jsc)的提高,這是由于C_3N_4量子點(diǎn)修飾ZnO后改善了 ZnO電子傳輸層的形貌,并降低了 ZnO的功函數(shù),這有利于電子在光活性層和ZnO電子傳輸層界面的收集和傳輸。(3)作為與g-C_3N_4結(jié)構(gòu)非常類(lèi)似的另一類(lèi)熱門(mén)的二維材料,石墨烯已在聚合物太陽(yáng)能電池中得到了廣泛的應(yīng)用,主要集中于將其應(yīng)用于聚合物太陽(yáng)能電池的空穴傳輸層。為替代正型體相異質(zhì)結(jié)聚合物太陽(yáng)能電池中常用的酸性PEDOT:PSS空穴傳輸層,我們發(fā)展了一種簡(jiǎn)單的修飾氧化石墨烯提高其空穴傳輸能力并應(yīng)用于正型體相異質(zhì)結(jié)聚合物太陽(yáng)能電池的方法。我們首先在氧化石墨烯薄膜上旋涂了一層磷化物,發(fā)現(xiàn)磷元素修飾后的氧化石墨烯(P-GO)可以有效地替代PEDOT:PSS空穴傳輸層。以P-GO作為新型空穴傳輸層,基于三種不同的光活性層體系 PTB7:PC_(71)BM,PBDTTT-C:PC_(71)BM 和 P3HT:PC61BM 的正型體相異質(zhì)結(jié)聚合物太陽(yáng)能電池的能量轉(zhuǎn)換效率分別達(dá)到7.85%,6.56%和3.75%,與相應(yīng)的基于PEDOT:PSS空穴傳輸層的電池器件的效率相當(dāng)。原子力顯微鏡和水接觸角測(cè)試表明磷修飾有利于光活性層與GO空穴傳輸層的界面接觸。紫外光電子能譜,X射線光電子能譜以及拉曼光譜揭示了磷修飾可以實(shí)現(xiàn)p型摻雜,從而增加了氧化石墨烯的功函數(shù),使其與活性層形成了更好的歐姆接觸。這兩方面性能的改善使得電池器件的開(kāi)路電壓和填充因子相比于以未修飾的GO作為的空穴傳輸層器件得到了明顯的提升,進(jìn)而提高電池器件的能量轉(zhuǎn)換效率。(4)由于石墨相氮化碳(g-C_3N_4)的帶隙較寬以及層間接觸電阻較大等原因,其可見(jiàn)光催化活性十分有限。為提高g-C_3N_4的電荷分離效率和導(dǎo)電性,我們發(fā)展了一種簡(jiǎn)單的利用富勒烯C_(60)共價(jià)修飾g-C_3N_4的方法。我們首先采用高能球磨法成功合成了 g-C_3N_4與C_(60)共價(jià)連接的g-C_3N_4/C_(60)雜化材料。通過(guò)一系列光譜表征,證實(shí)了 g-C_3N_4/C_(60)雜化結(jié)構(gòu)的形成,并提出了一種可能的g-C_3N_4/C_(60)雜化材料的構(gòu)型,即通過(guò)四元碳氮雜環(huán)將富勒烯C_(60)連接到g-C_3N_4的邊緣。然后將g-C_3N_4/C_(60)雜化材料應(yīng)用于可見(jiàn)光(λ420 nm)下分解水產(chǎn)生氫氣,在沒(méi)有使用包括Pt在內(nèi)的任何貴金屬助催化劑的條件下,我們獲得了 266 μmol·h-1g-1的產(chǎn)氫速率,相比于未修飾的g-C_3N_4(67μmol·h-1g-1)提高了大約4倍。通過(guò)C_(60)共價(jià)修飾提高g-C_3N_4的光催化活性的原因是C_(60)共價(jià)連接降低了 g-C_3N_4的導(dǎo)帶,有利于電子從光敏劑轉(zhuǎn)移到g-C_3N_4上,同時(shí)光生電子從g-C_3N_4到C_(60)的快速轉(zhuǎn)移有效地阻止了光生電子-空穴對(duì)的復(fù)合。
[Abstract]:Polymer solar cell is a kind of photovoltaic device based on organic photo-active materials. It has many advantages, such as simple preparation process, low cost, light weight and large-scale preparation of flexible devices. Graphite-phase carbon nitride is widely used in photocatalysis because of its special electronic band structure and good physical and chemical stability. Graphite phase carbon nitride (g-C_3N_4) has been widely used in polymer solar cells, but rarely reported in polymer solar cells. In this paper, the application of graphite phase carbon nitride (g-C_3N_4) in polymer solar cells and the enhancement of its photocatalytic performance were explored, focusing on the simple functionalization of g-C_3N_4 to expand its application. In order to improve the dispersion of g-C_3N_4 in o-dichlorobenzene solvents, we first prepared the soluble C_3N_4 quantum dots by solvothermal method, and then doped them into three different photoactive layer systems: P3HT: PC61BM, PBDTTT-C: PC_ (71) BM and PTB7-Th: PC_ (71) BM. The energy conversion efficiencies of the batteries are 4.23%, 6.36% and 9.18% respectively, which are 17.5%, 11.6% and 11.8% higher than those of the undoped reference batteries. This improvement is mainly due to the improvement of short-circuit current (Jsc). The surface morphology, optical absorption and photoluminescence properties of the active layer films before and after C 3N 4 quantum dot doping are studied. A series of characterizations, such as the charge transfer properties of the cell devices, show that the doping of C 3N 4 quantum dots improves the morphology of the photoactive layer and the separation and transmission of charge at the active layer and interface, thus improving the performance of the cell devices. (2) To expand the application of g-C 3N 4 in polymer solar cells, we changed the solvothermal method. C_3N_4 quantum dots with good dispersion in polar solvents N, N-dimethylformamide (DMF) were prepared and spin-coated on ZnO thin films to modify the ZnO electron transport layer. On this basis, three inverters based on PBDTTT-C:PC_ (71) BM, PTB7:PC_ (71) BM and PTB7-Th BM and PTB7-PC_ (71) BM were prepared. The energy conversion efficiency of phase heterojunction polymer solar cells is 7.03%, 8.47% and 9.29% respectively, which is about 20.0%, 12.2% and 11.1% higher than that of unmodified ZnO reference cells. The improvement of cell devices is mainly due to the improvement of short circuit current (Jsc), which is attributed to the improvement of ZnO electrons by C_3N_4 quantum dots modified ZnO. The morphology of the transport layer and the reduction of the work function of ZnO are beneficial to the collection and transmission of electrons at the interface between the photoactive layer and the ZnO electron transport layer. (3) Graphene has been widely used in polymer solar cells as another popular two-dimensional material with similar structure to g-C_3N_4, mainly focusing on its application in polymer solar cells. In order to replace the acidic PEDOT: PSS hole transport layer commonly used in normal bulk heterojunction polymer solar cells, we developed a simple method to modify graphene oxide to improve its hole transport capacity and apply it to normal bulk heterojunction polymer solar cells. It was found that the modified graphene oxide (P-GO) can effectively replace the PEDOT:PSS hole transport layer by spin coating the graphene oxide film with phosphides. The orthotropic phase heterojunction polymerization of P-GO as a novel hole transport layer based on three different photoactive layer systems PTB7:PC_ (71) BM, PBDTTT-C:PC_ (71) BM and P 3HT:PC61BM was carried out. The energy conversion efficiencies of solar cells are 7.85%, 6.56% and 3.75% respectively, which are comparable to the corresponding devices based on PEDOT:PSS hole transport layer. The results of atomic force microscopy and water contact angle test show that phosphorus modification is beneficial to the interface between the photoactive layer and the GO hole transport layer. Raman spectroscopy reveals that phosphorus modification can achieve p-type doping, thus increasing the work function of graphene oxide and forming a better ohmic contact with the active layer. (4) The visible photocatalytic activity of graphite carbon nitride (g-C_3N_4) is very limited due to its wide band gap and large contact resistance between layers. To improve the charge separation efficiency and conductivity of g-C_3N_4, a simple covalent modification of fullerene C_ (60) has been developed. The g-C_3N_4/C_ (60) hybrid material covalently bonded with g-C_3N_4 and C_ (60) was synthesized by high energy ball milling. The formation of g-C_3N_4/C_ (60) hybrid structure was confirmed by a series of spectral characterization, and a possible configuration of g-C_3N_4/C_ (60) hybrid material was proposed. Leene C_ (60) is connected to the edge of g-C_3N_4. Then g-C_3N_4/C_ (60) hybrid material is applied to decompose water to produce hydrogen under visible light (lambda 420 nm). Without any precious metal cocatalyst including Pt, the hydrogen production rate of 266 micromol h-1g-1 is obtained, which is higher than that of unmodified g-C_3N_4 (67 micromol h-1g-1). The photocatalytic activity of g-C_3N_4 was enhanced by C_ (60) covalent modification because C_ (60) covalent bonding reduced the conduction band of g-C_3N_4, facilitated the transfer of electrons from photosensitizer to g-C_3N_4, and the rapid transfer of photogenerated electrons from g-C_3N_4 to C_ (60) effectively prevented the recombination of photogenerated electron-hole pairs.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM914.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前2條

1 何艷陽(yáng),張海燕;富勒烯碳籠材料的制備與研究[J];廣東工學(xué)院學(xué)報(bào);1996年01期

2 楊國(guó)偉,袁放成;富勒烯薄膜的波導(dǎo)Raman散射增強(qiáng)效應(yīng)[J];科學(xué)通報(bào);1996年14期

相關(guān)會(huì)議論文 前2條

1 王春儒;;打破富勒烯的獨(dú)立五元環(huán)規(guī)則[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年

2 王培杰;方炎;;富勒烯C_(60)、C_(70)分子在金納米顆粒表面的吸附趨向的SERS以及群理論研究[A];第十五屆全國(guó)光散射學(xué)術(shù)會(huì)議論文摘要集[C];2009年

相關(guān)重要報(bào)紙文章 前1條

1 華凌;新方法合成的富勒烯硬度超鉆石[N];科技日?qǐng)?bào);2014年

相關(guān)博士學(xué)位論文 前10條

1 崔金星;大碳籠富勒烯和內(nèi)嵌金屬富勒烯的高壓研究[D];吉林大學(xué);2016年

2 郝彤;基于富勒烯的支架材料研制及在心肌組織工程的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2016年

3 杜明潤(rùn);溶劑化富勒烯的高壓新結(jié)構(gòu)和性質(zhì)研究:摻雜溶劑分子的調(diào)控作用[D];吉林大學(xué);2017年

4 陳翔;石墨相氮化碳的功能化及其在聚合物太陽(yáng)能電池和光催化中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年

5 任小元;富勒烯及其衍生物的理論與實(shí)驗(yàn)研究[D];浙江大學(xué);2005年

6 許磊;大富勒烯結(jié)構(gòu)與穩(wěn)定性的理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年

7 廖照江;非經(jīng)典C_(60)的捕獲和富勒烯形成機(jī)理研究[D];廈門(mén)大學(xué);2007年

8 袁勇波;原子小團(tuán)簇激發(fā)態(tài)性質(zhì)及摻雜富勒烯密度泛函計(jì)算研究[D];南京理工大學(xué);2007年

9 崔雯;新型富勒烯摻雜復(fù)合材料的合成及其高壓相變研究[D];吉林大學(xué);2014年

10 岳鋅;原子與富勒烯籠的相互作用的第一性原理研究[D];大連理工大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 楊婷;內(nèi)嵌原子簇富勒烯的制備,結(jié)構(gòu)表征及化學(xué)反應(yīng)性的研究[D];蘇州大學(xué);2015年

2 龔文林;富勒烯聚縮水甘油醚硝酸酯及其鉛/銅鹽的合成與熱性能研究[D];西南科技大學(xué);2015年

3 顧艷;手性C_(60)富勒烯液晶的合成及表征[D];蘇州大學(xué);2014年

4 馬麗霞;富勒烯材料修飾電極的制備及其在電催化中的應(yīng)用[D];東華大學(xué);2016年

5 蘇強(qiáng);非富勒烯有機(jī)受體/共扼聚合物太陽(yáng)能電池的研究[D];蘭州交通大學(xué);2016年

6 趙劍鋒;富勒烯衍生物合成、表征及金屬富勒烯高壓結(jié)構(gòu)形變研究[D];中國(guó)計(jì)量大學(xué);2016年

7 陳微微;n-型自摻雜富勒烯銨鹽構(gòu)效關(guān)系研究[D];浙江大學(xué);2016年

8 朱峰;微環(huán)境影響的富勒烯電弧合成[D];廈門(mén)大學(xué);2009年

9 韓曉晨;金屬富勒烯合成及提取方法的研究[D];東北大學(xué);2008年

10 徐莉;內(nèi)嵌金屬富勒烯的計(jì)算研究[D];西南大學(xué);2012年

,

本文編號(hào):2216502

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2216502.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ef789***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com