石墨相氮化碳的功能化及其在聚合物太陽(yáng)能電池和光催化中的應(yīng)用
[Abstract]:Polymer solar cell is a kind of photovoltaic device based on organic photo-active materials. It has many advantages, such as simple preparation process, low cost, light weight and large-scale preparation of flexible devices. Graphite-phase carbon nitride is widely used in photocatalysis because of its special electronic band structure and good physical and chemical stability. Graphite phase carbon nitride (g-C_3N_4) has been widely used in polymer solar cells, but rarely reported in polymer solar cells. In this paper, the application of graphite phase carbon nitride (g-C_3N_4) in polymer solar cells and the enhancement of its photocatalytic performance were explored, focusing on the simple functionalization of g-C_3N_4 to expand its application. In order to improve the dispersion of g-C_3N_4 in o-dichlorobenzene solvents, we first prepared the soluble C_3N_4 quantum dots by solvothermal method, and then doped them into three different photoactive layer systems: P3HT: PC61BM, PBDTTT-C: PC_ (71) BM and PTB7-Th: PC_ (71) BM. The energy conversion efficiencies of the batteries are 4.23%, 6.36% and 9.18% respectively, which are 17.5%, 11.6% and 11.8% higher than those of the undoped reference batteries. This improvement is mainly due to the improvement of short-circuit current (Jsc). The surface morphology, optical absorption and photoluminescence properties of the active layer films before and after C 3N 4 quantum dot doping are studied. A series of characterizations, such as the charge transfer properties of the cell devices, show that the doping of C 3N 4 quantum dots improves the morphology of the photoactive layer and the separation and transmission of charge at the active layer and interface, thus improving the performance of the cell devices. (2) To expand the application of g-C 3N 4 in polymer solar cells, we changed the solvothermal method. C_3N_4 quantum dots with good dispersion in polar solvents N, N-dimethylformamide (DMF) were prepared and spin-coated on ZnO thin films to modify the ZnO electron transport layer. On this basis, three inverters based on PBDTTT-C:PC_ (71) BM, PTB7:PC_ (71) BM and PTB7-Th BM and PTB7-PC_ (71) BM were prepared. The energy conversion efficiency of phase heterojunction polymer solar cells is 7.03%, 8.47% and 9.29% respectively, which is about 20.0%, 12.2% and 11.1% higher than that of unmodified ZnO reference cells. The improvement of cell devices is mainly due to the improvement of short circuit current (Jsc), which is attributed to the improvement of ZnO electrons by C_3N_4 quantum dots modified ZnO. The morphology of the transport layer and the reduction of the work function of ZnO are beneficial to the collection and transmission of electrons at the interface between the photoactive layer and the ZnO electron transport layer. (3) Graphene has been widely used in polymer solar cells as another popular two-dimensional material with similar structure to g-C_3N_4, mainly focusing on its application in polymer solar cells. In order to replace the acidic PEDOT: PSS hole transport layer commonly used in normal bulk heterojunction polymer solar cells, we developed a simple method to modify graphene oxide to improve its hole transport capacity and apply it to normal bulk heterojunction polymer solar cells. It was found that the modified graphene oxide (P-GO) can effectively replace the PEDOT:PSS hole transport layer by spin coating the graphene oxide film with phosphides. The orthotropic phase heterojunction polymerization of P-GO as a novel hole transport layer based on three different photoactive layer systems PTB7:PC_ (71) BM, PBDTTT-C:PC_ (71) BM and P 3HT:PC61BM was carried out. The energy conversion efficiencies of solar cells are 7.85%, 6.56% and 3.75% respectively, which are comparable to the corresponding devices based on PEDOT:PSS hole transport layer. The results of atomic force microscopy and water contact angle test show that phosphorus modification is beneficial to the interface between the photoactive layer and the GO hole transport layer. Raman spectroscopy reveals that phosphorus modification can achieve p-type doping, thus increasing the work function of graphene oxide and forming a better ohmic contact with the active layer. (4) The visible photocatalytic activity of graphite carbon nitride (g-C_3N_4) is very limited due to its wide band gap and large contact resistance between layers. To improve the charge separation efficiency and conductivity of g-C_3N_4, a simple covalent modification of fullerene C_ (60) has been developed. The g-C_3N_4/C_ (60) hybrid material covalently bonded with g-C_3N_4 and C_ (60) was synthesized by high energy ball milling. The formation of g-C_3N_4/C_ (60) hybrid structure was confirmed by a series of spectral characterization, and a possible configuration of g-C_3N_4/C_ (60) hybrid material was proposed. Leene C_ (60) is connected to the edge of g-C_3N_4. Then g-C_3N_4/C_ (60) hybrid material is applied to decompose water to produce hydrogen under visible light (lambda 420 nm). Without any precious metal cocatalyst including Pt, the hydrogen production rate of 266 micromol h-1g-1 is obtained, which is higher than that of unmodified g-C_3N_4 (67 micromol h-1g-1). The photocatalytic activity of g-C_3N_4 was enhanced by C_ (60) covalent modification because C_ (60) covalent bonding reduced the conduction band of g-C_3N_4, facilitated the transfer of electrons from photosensitizer to g-C_3N_4, and the rapid transfer of photogenerated electrons from g-C_3N_4 to C_ (60) effectively prevented the recombination of photogenerated electron-hole pairs.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM914.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 何艷陽(yáng),張海燕;富勒烯碳籠材料的制備與研究[J];廣東工學(xué)院學(xué)報(bào);1996年01期
2 楊國(guó)偉,袁放成;富勒烯薄膜的波導(dǎo)Raman散射增強(qiáng)效應(yīng)[J];科學(xué)通報(bào);1996年14期
相關(guān)會(huì)議論文 前2條
1 王春儒;;打破富勒烯的獨(dú)立五元環(huán)規(guī)則[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年
2 王培杰;方炎;;富勒烯C_(60)、C_(70)分子在金納米顆粒表面的吸附趨向的SERS以及群理論研究[A];第十五屆全國(guó)光散射學(xué)術(shù)會(huì)議論文摘要集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 華凌;新方法合成的富勒烯硬度超鉆石[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 崔金星;大碳籠富勒烯和內(nèi)嵌金屬富勒烯的高壓研究[D];吉林大學(xué);2016年
2 郝彤;基于富勒烯的支架材料研制及在心肌組織工程的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2016年
3 杜明潤(rùn);溶劑化富勒烯的高壓新結(jié)構(gòu)和性質(zhì)研究:摻雜溶劑分子的調(diào)控作用[D];吉林大學(xué);2017年
4 陳翔;石墨相氮化碳的功能化及其在聚合物太陽(yáng)能電池和光催化中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
5 任小元;富勒烯及其衍生物的理論與實(shí)驗(yàn)研究[D];浙江大學(xué);2005年
6 許磊;大富勒烯結(jié)構(gòu)與穩(wěn)定性的理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
7 廖照江;非經(jīng)典C_(60)的捕獲和富勒烯形成機(jī)理研究[D];廈門(mén)大學(xué);2007年
8 袁勇波;原子小團(tuán)簇激發(fā)態(tài)性質(zhì)及摻雜富勒烯密度泛函計(jì)算研究[D];南京理工大學(xué);2007年
9 崔雯;新型富勒烯摻雜復(fù)合材料的合成及其高壓相變研究[D];吉林大學(xué);2014年
10 岳鋅;原子與富勒烯籠的相互作用的第一性原理研究[D];大連理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 楊婷;內(nèi)嵌原子簇富勒烯的制備,結(jié)構(gòu)表征及化學(xué)反應(yīng)性的研究[D];蘇州大學(xué);2015年
2 龔文林;富勒烯聚縮水甘油醚硝酸酯及其鉛/銅鹽的合成與熱性能研究[D];西南科技大學(xué);2015年
3 顧艷;手性C_(60)富勒烯液晶的合成及表征[D];蘇州大學(xué);2014年
4 馬麗霞;富勒烯材料修飾電極的制備及其在電催化中的應(yīng)用[D];東華大學(xué);2016年
5 蘇強(qiáng);非富勒烯有機(jī)受體/共扼聚合物太陽(yáng)能電池的研究[D];蘭州交通大學(xué);2016年
6 趙劍鋒;富勒烯衍生物合成、表征及金屬富勒烯高壓結(jié)構(gòu)形變研究[D];中國(guó)計(jì)量大學(xué);2016年
7 陳微微;n-型自摻雜富勒烯銨鹽構(gòu)效關(guān)系研究[D];浙江大學(xué);2016年
8 朱峰;微環(huán)境影響的富勒烯電弧合成[D];廈門(mén)大學(xué);2009年
9 韓曉晨;金屬富勒烯合成及提取方法的研究[D];東北大學(xué);2008年
10 徐莉;內(nèi)嵌金屬富勒烯的計(jì)算研究[D];西南大學(xué);2012年
,本文編號(hào):2216502
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2216502.html