并網(wǎng)型光伏電站的發(fā)電功率短期預(yù)測(cè)研究與實(shí)現(xiàn)
[Abstract]:Photovoltaic power generation is favored by many countries because of its clean and pollution-free. However, because of the randomness and fluctuation of the output power, the photovoltaic power station will have a certain impact on the public power grid when it is connected to the grid. This is extremely detrimental to the normal operation of the power grid. Therefore, the accurate short-term prediction of the generation power of grid-connected photovoltaic power stations is beneficial to the rational distribution and planning of the proportion of photovoltaic and conventional energy in the power dispatching department, and to the timely adjustment of the dispatching plan. Make the power system run in a safe, stable and economical way. Based on a large number of domestic and foreign literatures, this paper takes the historical data of a photovoltaic power plant in Gansu as the research object, and establishes a prediction model by using the HS-ESN model. Then the short-term prediction analysis of PV power generation is carried out. Finally, by mixing C # and MATLAB, the design of PV power short-term prediction system is introduced. Based on the above description, the research contents of this paper mainly include the following aspects: firstly, the output characteristics of photovoltaic cells are combed by using the simulation model established by MATLAB. The influence of solar radiation intensity and temperature on photovoltaic power generation is analyzed, and the main factors affecting photovoltaic power generation are determined. Then each factor is composed of feature vector and the similar day selection algorithm is used to extract the similar day and training sample. Secondly, based on the in-depth study of echo state network (Echo State Network) algorithm, a hybrid algorithm is proposed to optimize echo state network algorithm based on Harmony search (HS) algorithm. In this paper, HS algorithm is used to optimize the reserve cell parameters of ESN algorithm, and the precision of ESN algorithm is improved effectively. The HS-ESN algorithm is applied to the short-term prediction of photovoltaic power generation. The effectiveness of introducing the similar day selection algorithm is verified by forecasting PV power under different weather types by different prediction models. The performance of HS-ESN model is better than that of single ESN model and other models commonly used at present at the same time the performance of HS-ESN model is better than that of single ESN model and other commonly used models. Finally, according to the prediction model and method proposed in this paper, a PV power short-term forecasting system is designed, and the demand analysis and structure design of the system are carried out. The prediction system has the basic modules of short-term prediction of photovoltaic power generation, including login interface and data import module, short-term power generation prediction module, report statistics module, data query and output module, so it has certain practical value.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王新友;王晨華;張yN;魯江;;基于改進(jìn)型ESN的短期風(fēng)電功率預(yù)測(cè)[J];自動(dòng)化與儀器儀表;2017年02期
2 張程熠;唐雅潔;李永杰;高強(qiáng);江全元;;適用于小樣本的神經(jīng)網(wǎng)絡(luò)光伏預(yù)測(cè)方法[J];電力自動(dòng)化設(shè)備;2017年01期
3 趙越;;基于電流滯環(huán)跟蹤PWM逆變器雙閉環(huán)控制研究[J];電子科技;2016年12期
4 孔凡太;戴松元;;我國太陽能光伏產(chǎn)業(yè)現(xiàn)狀及未來展望[J];中國工程科學(xué);2016年04期
5 李樂;劉天琪;;基于近鄰傳播聚類和回聲狀態(tài)網(wǎng)絡(luò)的光伏預(yù)測(cè)[J];電力自動(dòng)化設(shè)備;2016年07期
6 田中大;李樹江;王艷紅;王向東;;基于混沌理論與改進(jìn)回聲狀態(tài)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量多步預(yù)測(cè)[J];通信學(xué)報(bào);2016年03期
7 顏蘇莉;孫婧豪;;我國光伏產(chǎn)業(yè)的發(fā)展現(xiàn)狀、存在問題及解決之道[J];華北電力大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2016年01期
8 張晉雁;陶宏才;;回聲狀態(tài)網(wǎng)絡(luò)研究[J];成都信息工程學(xué)院學(xué)報(bào);2015年06期
9 彭光虎;馬景超;龔文杰;段曉燕;張智晟;;基于ESN的光伏發(fā)電功率預(yù)測(cè)模型研究[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2015年03期
10 孔波利;崔麗艷;丁釗;李現(xiàn)偉;王以笑;;基于風(fēng)光混合模型的短期功率預(yù)測(cè)方法研究[J];電力系統(tǒng)保護(hù)與控制;2015年18期
相關(guān)碩士學(xué)位論文 前10條
1 羅浩;高頻隔離無中間直流環(huán)節(jié)光伏并網(wǎng)逆變器研究[D];北京交通大學(xué);2016年
2 李雪城;高頻隔離型光伏并網(wǎng)逆變器的研究[D];北京交通大學(xué);2014年
3 曲洪達(dá);并網(wǎng)型光伏發(fā)電功率預(yù)測(cè)系統(tǒng)的研究與實(shí)現(xiàn)[D];華北電力大學(xué);2014年
4 楊德全;基于神經(jīng)網(wǎng)絡(luò)的光伏發(fā)電系統(tǒng)發(fā)電功率預(yù)測(cè)[D];華北電力大學(xué);2014年
5 張佳偉;光伏并網(wǎng)發(fā)電系統(tǒng)短期發(fā)電功率預(yù)測(cè)研究[D];南京信息工程大學(xué);2013年
6 馮志誠;太陽能光伏發(fā)電性能影響因素的研究[D];內(nèi)蒙古工業(yè)大學(xué);2013年
7 王旭峰;并網(wǎng)型光伏電站發(fā)電功率的建模與預(yù)測(cè)研究[D];華北電力大學(xué);2013年
8 王磊;光伏發(fā)電系統(tǒng)輸出功率短期預(yù)測(cè)技術(shù)研究[D];合肥工業(yè)大學(xué);2012年
9 趙欣宇;光伏發(fā)電系統(tǒng)功率預(yù)測(cè)的研究與實(shí)現(xiàn)[D];華北電力大學(xué);2012年
10 彭倬;基于模糊控制技術(shù)的三相光伏并網(wǎng)逆變器的研究[D];湖北工業(yè)大學(xué);2011年
,本文編號(hào):2130859
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2130859.html