有機系超級電容用活性炭性能的研究以及大容量超級電容器的開發(fā)
本文選題:超級電容 + 活性炭 ; 參考:《吉林大學(xué)》2017年博士論文
【摘要】:隨著傳統(tǒng)能源的日益消耗以及近年來環(huán)境問題逐漸被人們所重視,清潔能源行業(yè)得到了飛速的發(fā)展,對儲能元件的性能也提出了更高的要求,傳統(tǒng)的儲能元件已經(jīng)開始顯現(xiàn)出其局限性,超級電容器作為新一代儲能元件,逐漸走進了人們的視野。本論文著力于超級電容單體性能的提高,研究內(nèi)容包括集流體表面改性技術(shù)對電容單體性能的影響、電極材料涂布厚度對電容單體內(nèi)阻的影響、活性炭材料比表面積與孔徑分布對材料比電容的影響等,在研究結(jié)果的基礎(chǔ)之上,設(shè)計并且制備了不同類型的大容量超級電容器單體。使用了電火花放電的方法處理集流體表面,極大地降低了集流體與電極材料的接觸電阻,使得電極片電阻的測量更加精確,在此基礎(chǔ)上分析了極片厚度對電容器內(nèi)阻的影響。為了探究電極材料涂層厚度對電極材料的比電容、能量密度、電容器內(nèi)阻、峰值功率以及循環(huán)性能的影響,制備了不同涂層厚度的樣品,使用了恒流充放電(GCD)、循環(huán)伏安(CV)、電化學(xué)交流阻抗圖譜(EIS)等手段對樣品進行了較全面的測試,分析實驗結(jié)果發(fā)現(xiàn):電極材料的比電容、能量密度與電極材料涂層厚度呈現(xiàn)非線性關(guān)系,當涂層厚度為88.2μm時,二者達到最大值,分別為122.5 F?g~(-1),38.5 Wh/kg,也就是說,此涂層厚度可以作為能量型超級電容器的最佳電極材料涂層厚度;電容器的內(nèi)阻、峰值功率以及循環(huán)性能與電極材料涂層厚度呈現(xiàn)非線性關(guān)系,當涂層厚度為61.1μm時達到最佳,分別為0.126Ω,14.46W,92.9%,此涂層厚度可以作為功率型超級電容器的最佳電極材料涂層厚度;為了從理論上解釋內(nèi)阻與電極材料涂層厚度的關(guān)系,建立了一個數(shù)學(xué)模型來描述電荷在孔隙以及傳輸通道中的擴散過程,實驗結(jié)果也充分驗證了此模型的可靠性。由模型計算得到,使得內(nèi)阻最小化的涂層厚度應(yīng)為53.1μm。測試了四種活性炭樣品的比表面積與孔徑分布等參數(shù),以及其作為電極材料的比電容。等溫吸脫附曲線(Ⅳ型)與密度函數(shù)理論(DFT)孔徑分布結(jié)果顯示,雖然四種材料的孔徑類型有所區(qū)別,但都存在大量的微孔和中孔結(jié)構(gòu)。通過對比各樣品的比電容與比表面積,發(fā)現(xiàn)比表面積并不是決定材料比電容的唯一標準。因為微孔范圍內(nèi)有很大一部分孔徑小于電解液中的帶電離子尺寸,所以不能夠存儲電荷,致使這部分微孔沒有貢獻電容量。為了確定活性炭材料提供比電容的孔徑分布范圍,假定活性炭材料的電容量與能夠存儲電荷的孔隙面積或者孔體積成線性關(guān)系,在此基礎(chǔ)之上計算了在不同孔徑分布下的比表面積和孔體積與比電容的線性相關(guān)性,確定了活性炭材料提供電容量的孔徑分布為1.2-50nm。在前兩章的研究基礎(chǔ)上,研究開發(fā)了300F軟包裝、3000F軟包裝以及4000F鋁殼封裝的超級電容單體制備工藝流程,包括電極漿料混合、電極材料涂布、極片設(shè)計、極耳設(shè)計、超聲焊接、激光焊接、真空注液等工藝。對制備的超級電容單體進行了電化學(xué)性能測試:300F單體在1A放電電流下的實測容量為333F,等效串聯(lián)內(nèi)阻為1.5mΩ,能量密度為4.54Wh?kg~(-1),峰值功率密度為25.9kW?kg~(-1);3000F單體在4A放電電流下的實測容量為2950F,等效串聯(lián)內(nèi)阻0.375mΩ,能量密度為3.31Wh?kg~(-1),峰值功率密度為8.45kW?kg~(-1);4000F單體在4A放電電流下的實測容量為4258F,等效串聯(lián)內(nèi)阻0.43mΩ,能量密度為5.6Wh?kg~(-1),峰值功率密度為7.4kW?kg~(-1),在50A大電流放電時,單體仍保持3609F的電容量,此時內(nèi)阻為0.44mΩ,能量密度為4.2Wh?kg~(-1),峰值功率密度為7.68kW?kg~(-1)。將國際領(lǐng)先的工業(yè)化產(chǎn)品在同樣條件下測試,對比實驗結(jié)果發(fā)現(xiàn),雖然實驗室制備的電容器在內(nèi)阻以及峰值功率密度方面稍差,但是能量密度較高。
[Abstract]:With the increasing consumption of traditional energy and the attention of environmental problems in recent years, the clean energy industry has been developing rapidly, and the performance of energy storage components is also higher. The traditional energy storage element has begun to show its limitations. As a new generation of energy storage components, the supercapacitor has gradually entered the people. This paper focuses on the improvement of the performance of the supercapacitor monomers. The study includes the influence of the surface modification technology on the performance of the capacitor, the influence of the coating thickness on the internal resistance of the capacitor, the influence of the specific surface area and the pore size distribution of the activated carbon material on the material's capacitance, and so on, based on the research results. Different types of large capacity supercapacitor monomers are designed and prepared. The method of electrical discharge discharge is used to deal with the surface of the fluid collector. The contact resistance of the collector and the electrode material is greatly reduced, and the measurement of the resistance of the electrode is more accurate. On this basis, the influence of the thickness of the electrode on the internal resistance of the capacitor is analyzed. With the influence of the thickness of the electrode material on the specific capacitance, energy density, capacitor internal resistance, peak power and cycle performance of the electrode material, the samples with different coating thickness were prepared. The samples were tested by constant current charge discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the experimental junction was analyzed. It is found that the specific capacitance and the energy density of the electrode material have a nonlinear relationship with the thickness of the electrode material. When the thickness of the coating is 88.2 m, the two can reach the maximum value, 122.5 F? G~ (-1), 38.5 Wh/kg respectively, that is to say, the coating thickness can be used as the best electrode material coating thickness for the energy type supercapacitor; the internal resistance of the capacitor, The peak power and the cycle performance are nonlinear with the coating thickness of the electrode material. When the thickness of the coating is 61.1 m, the coating thickness is 0.126, 14.46W, 92.9% respectively. The coating thickness can be used as the best electrode material coating thickness for the power type supercapacitor. A mathematical model is established to describe the diffusion process of charge in the pore and the transmission channel. The experimental results also fully verify the reliability of the model. The thickness of the coating is calculated by the model. The thickness of the coating to minimize the internal resistance should be 53.1 mu m. to test the specific surface area and the pore size distribution of the four kinds of activated carbon samples, as well as its work. For the specific capacitance of the electrode material. The results of the isothermal desorption curve (type IV) and density function theory (DFT) aperture distribution show that although the pore size of the four materials is different, there are a lot of micropores and mesoporous structures. By comparing the specific capacitance and the specific surface of each sample, it is found that the specific surface area is not a determination of the specific capacitance. The only standard. Because a large portion of the pore size is smaller than the charged ion size in the electrolyte, it is not able to store the charge, causing the pore to not contribute to the capacitance. In order to determine the pore size distribution of the activated carbon material, the capacitance of the activated carbon material and the pore surface that can store the charge are assumed. The linear relation between product or pore volume is linear. On this basis, the linear correlation between specific surface area and pore volume and specific capacitance under different pore sizes is calculated. The pore size distribution of activated carbon materials is determined to be 1.2-50nm. on the basis of the first two chapters, and 300F soft packaging, 3000F soft packaging and 4000F aluminum have been developed. The process flow of the shell package supercapacitor single system, including electrode size mixing, electrode material coating, polar chip design, polar ear design, ultrasonic welding, laser welding and vacuum injection, was used to test the electrochemical performance of the prepared supercapacitor. The measured capacity of the 300F monomer in the 1A discharge current was 333F, and the equivalent series internal resistance was measured. For 1.5m Omega, the energy density is 4.54Wh? Kg~ (-1), the peak power density is 25.9kW? Kg~ (-1); the measured capacity of 3000F monomer under 4A discharge current is 2950F, the equivalent series internal resistance 0.375m Omega, the energy density is 3.31Wh? 43M Omega, the energy density is 5.6Wh? Kg~ (-1), the peak power density is 7.4kW? Kg~ (-1). At the time of the 50A large current discharge, the monomer still maintains the capacitance of 3609F, at this time the internal resistance is 0.44m Omega, the energy density is 4.2Wh? The peak power density is the same. The international leading industrial products are tested under the same conditions, and the experimental results found by comparison experiment are found, Although the capacitors prepared in the laboratory are slightly worse in internal resistance and peak power density, the energy density is higher.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM53
【相似文獻】
相關(guān)期刊論文 前10條
1 ;我國第一種國產(chǎn)超級電容器通過鑒定[J];測控技術(shù);2000年12期
2 劉建新;超級電容器在直流電源系統(tǒng)中的應(yīng)用[J];華東交通大學(xué)學(xué)報;2002年03期
3 桂長清;新型貯能單元超級電容器[J];電池工業(yè);2003年04期
4 ;超級電容器[J];電源世界;2004年03期
5 文建國,周震濤,文衍宣;超級電容器材料研究的辯證思維[J];東莞理工學(xué)院學(xué)報;2004年01期
6 李薦,鐘暉,鐘海云,戴艷陽,溫俊杰;超級電容器應(yīng)用設(shè)計[J];電源技術(shù);2004年06期
7 Bobby Maher;;超級電容器簡介[J];今日電子;2006年01期
8 王鑫;;超級電容器在汽車啟動中的應(yīng)用[J];國外電子元器件;2006年05期
9 Matt Reynolds;;替代能源中的超級電容器介紹[J];今日電子;2006年07期
10 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
相關(guān)會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應(yīng)用[A];中國化學(xué)會第15屆反應(yīng)性高分子學(xué)術(shù)討論會論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計、制備及性質(zhì)研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級電容器——多孔碳電極材料的影響[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:2102786
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2102786.html