高壓直流電纜附件內(nèi)缺陷對(duì)電場(chǎng)分布的影響研究
本文選題:高壓直流電纜附件 + 硅橡膠; 參考:《哈爾濱理工大學(xué)》2017年碩士論文
【摘要】:隨著柔性直流輸電技術(shù)和直流電纜制造技術(shù)的日漸成熟,交聯(lián)聚乙烯絕緣高壓直流電纜以其優(yōu)異的性能在跨越海峽輸電、穿越隧道送電和可再生能源發(fā)電等領(lǐng)域成為了直流塑料電纜的首選。在電纜線路中電纜附件扮演著銜接、過(guò)渡等重要角色,是電纜系統(tǒng)重要組成部分,同時(shí)也是輸電線路的薄弱環(huán)節(jié),故障多發(fā)部位。合理選擇絕緣材料,全面研究電纜附件內(nèi)含有典型缺陷情況下的電場(chǎng)分布規(guī)律,有助于掌握電纜線路運(yùn)行狀態(tài),及時(shí)發(fā)現(xiàn)和修復(fù)故障隱患,提高電纜系統(tǒng)的供電可靠性,對(duì)高壓直流電纜系統(tǒng)的長(zhǎng)期穩(wěn)定運(yùn)行具有重要意義。本文首先根據(jù)高壓直流電纜附件材料的基礎(chǔ)性能采用多物理場(chǎng)耦合仿真軟件(Comsol Multiphycics)構(gòu)建出高壓直流電纜附件仿真模型,根據(jù)電纜附件內(nèi)電場(chǎng)分布仿真結(jié)果選擇出一種電場(chǎng)分布特性?xún)?yōu)良的增強(qiáng)絕緣與電纜本體絕緣組合方案。其次,基于建立的高壓直流電纜附件仿真模型,仿真研究不同電壓幅值、不同溫度梯度及過(guò)電壓條件下電纜附件內(nèi)含有典型缺陷時(shí)穩(wěn)態(tài)和暫態(tài)電場(chǎng)分布規(guī)律。最后,探究缺陷位置與最大畸變電場(chǎng)位置的對(duì)應(yīng)關(guān)系,并且評(píng)估各種缺陷對(duì)電纜附件的危害程度。仿真結(jié)果發(fā)現(xiàn):在直流電壓作用下,非線性硅橡膠具有較強(qiáng)均化電場(chǎng)分布的能力,使無(wú)缺陷的直流電纜附件內(nèi)最大電場(chǎng)分布于電纜本體絕緣中,且外施電壓幅值越高均化電場(chǎng)分布的能力越強(qiáng);應(yīng)力錐安裝錯(cuò)位時(shí),電場(chǎng)畸變程度隨電纜外屏蔽超出應(yīng)力錐根部距離增加而增大,超出距離過(guò)長(zhǎng)會(huì)導(dǎo)致應(yīng)力控制體喪失均化電場(chǎng)分布的作用;增強(qiáng)絕緣內(nèi)有氣泡時(shí),電場(chǎng)主要集中在氣泡附近,最大電場(chǎng)強(qiáng)度超過(guò)空氣的擊穿場(chǎng)強(qiáng);應(yīng)力錐表面存在微小凸起時(shí),會(huì)使凸起附近局部電場(chǎng)明顯增強(qiáng);溫度梯度較大時(shí),電纜接頭本體絕緣內(nèi)出現(xiàn)場(chǎng)強(qiáng)分布翻轉(zhuǎn)現(xiàn)象,且最大場(chǎng)強(qiáng)位置由高壓屏蔽管端部轉(zhuǎn)移到應(yīng)力錐根部附近;電纜本體絕緣表面存在導(dǎo)電微粒時(shí),整個(gè)電纜接頭內(nèi)的最大場(chǎng)強(qiáng)都位于導(dǎo)電微粒邊緣。在直流疊加沖擊電壓作用下,無(wú)論疊加同極性還是反極性沖擊電壓,沖擊過(guò)程中電纜附件內(nèi)最大場(chǎng)強(qiáng)始終位于線芯附近的交聯(lián)聚乙烯絕緣內(nèi),且疊加同極性沖擊電壓過(guò)程的最大場(chǎng)強(qiáng)高于疊加反極性沖擊電壓過(guò)程中最大場(chǎng)強(qiáng)。
[Abstract]:With the development of flexible DC transmission technology and DC cable manufacturing technology, XLPE insulated HVDC cable is transmitted across straits with its excellent performance. Power generation through tunnels and renewable energy has become the first choice of DC plastic cables. Cable accessories play an important role in the connection and transition of cable lines, which is an important part of cable system, and is also the weak link of transmission lines and the location of multiple faults. The reasonable selection of insulating materials and the comprehensive study of the electric field distribution law in the case of typical defects in the cable accessory are helpful to master the running state of the cable line, to discover and repair the hidden trouble in time, and to improve the power supply reliability of the cable system. It is of great significance for the long-term stable operation of HVDC cable system. In this paper, according to the basic properties of HVDC cable accessories, the simulation model of HVDC cable accessories is constructed by Comsol Multiphycics. According to the simulation results of electric field distribution in cable accessories, a combination scheme of enhanced insulation and cable body insulation with excellent electric field distribution characteristics is selected. Secondly, based on the simulation model of HVDC cable accessories, the distribution of steady and transient electric fields under different voltage amplitude, different temperature gradient and overvoltage is studied. Finally, the relationship between the defect location and the maximum distorted electric field position is explored, and the harm of various defects to cable accessories is evaluated. The simulation results show that the nonlinear silicone rubber has a strong ability to homogenize the electric field distribution under the action of DC voltage, so that the maximum electric field in the accessories of the non-defective DC cable is distributed in the insulation of the cable body. The higher the amplitude of applied voltage is, the stronger the ability of homogenizing electric field distribution is, and when the stress cone is mislocated, the degree of electric field distortion increases with the distance of the shield outside the cable beyond the root of the stress cone increasing. When there are bubbles in the reinforcement insulation, the electric field mainly concentrates near the bubble, the maximum electric field intensity exceeds the breakdown field intensity of the air, and when the surface of the stress cone is slightly raised, the electric field will lose the effect of homogenizing the distribution of the electric field when the distance is too long. When the temperature gradient is high, the distribution of field intensity flips in the insulation of the cable joint, and the position of the maximum field intensity is transferred from the end of the high voltage shield pipe to the root of the stress cone. When there are conductive particles on the insulation surface of the cable, the maximum field strength of the cable joint is located at the edge of the conductive particle. Under the action of DC superposition impulse voltage, the maximum field strength of cable accessory is always located in the cross-linked polyethylene insulation near the wire core during the shock process, regardless of the superposition of the same polarity or reverse polarity impulse voltage. The maximum field strength of the superposition of the same polarity impulse voltage is higher than that of the superposed reverse polarity impulse voltage.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM75
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜伯學(xué);李忠磊;楊卓然;李進(jìn);;高壓直流交聯(lián)聚乙烯電纜應(yīng)用與研究進(jìn)展[J];高電壓技術(shù);2017年02期
2 楊卓然;李忠磊;李進(jìn);杜伯學(xué);;硅橡膠/SiC復(fù)合材料非線性電阻及電荷輸運(yùn)特性[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年24期
3 尚康良;曹均正;趙志斌;韓正一;馬麗斌;李文鵬;;320kV XLPE高壓直流電纜接頭附件仿真分析和結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年07期
4 李忠華;劉樂(lè)樂(lè);鄭歡;梁斯婷;;HVDC電纜電場(chǎng)分布影響因素的仿真研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年09期
5 謝書(shū)鴻;傅明利;尹毅;薛建凌;胡明;;中國(guó)交聯(lián)聚乙烯絕緣高壓直流電纜發(fā)展的三級(jí)跳:從160kV到200kV再到320kV[J];南方電網(wǎng)技術(shù);2015年10期
6 何淼;George Chen;Paul L.Lewin;;內(nèi)部缺陷對(duì)高壓直流電纜電場(chǎng)分布影響的有限元分析[J];南方電網(wǎng)技術(shù);2015年10期
7 楊佳明;趙洪;鄭昌佶;王暄;楊超塵;;納米粒子分散性對(duì)SiO_2/LDPE納米復(fù)合介質(zhì)直流介電性能的影響[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年19期
8 王霞;朱有玉;王陳誠(chéng);吳鍇;屠德民;;空間電荷效應(yīng)對(duì)直流電纜及附件絕緣界面電場(chǎng)分布的影響[J];高電壓技術(shù);2015年08期
9 鐘海杰;王佩龍;王錦明;黃洪;夏云杰;;用于抑制界面空間電荷的直流電纜附件設(shè)計(jì)[J];高電壓技術(shù);2015年04期
10 嚴(yán)有祥;方曉臨;張偉剛;趙健康;陳錚錚;陳朝暉;;廈門(mén)±320kV柔性直流電纜輸電工程電纜選型和敷設(shè)[J];高電壓技術(shù);2015年04期
相關(guān)碩士學(xué)位論文 前2條
1 尹春鵬;EPDM基非線性復(fù)合材料及其在直流電纜終端中的應(yīng)用[D];哈爾濱理工大學(xué);2015年
2 顧金;柔性高壓直流交聯(lián)聚乙烯(XLPE)電纜及其附件的設(shè)計(jì)研究[D];上海交通大學(xué);2010年
,本文編號(hào):2102769
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2102769.html