基于多信息融合的電網(wǎng)故障診斷方法研究
本文選題:電網(wǎng)故障診斷 + Petri網(wǎng)。 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:隨著電網(wǎng)的規(guī)模不斷擴(kuò)大,不同區(qū)域間的互聯(lián)越來越緊密,當(dāng)電網(wǎng)發(fā)生故障時,故障對系統(tǒng)的影響將越來越大,F(xiàn)有電網(wǎng)故障診斷方法多是基于斷路器跳閘、保護(hù)動作等開關(guān)量信息。然而,這種利用某種智能算法對開關(guān)量進(jìn)行處理得到故障診斷結(jié)果的方式,對斷路器與保護(hù)信息的完整性與準(zhǔn)確性具有很高的要求,不同程度的完整性與準(zhǔn)確性對診斷結(jié)果具有很大影響。.本文研究了利用多數(shù)據(jù)源信息進(jìn)行電網(wǎng)故障診斷的方法。首先介紹了課題的研究背景以及國內(nèi)外的發(fā)展現(xiàn)狀;其次,介紹了目前電網(wǎng)故障診斷的各種故障信息源;接下來本文對基于開關(guān)量信息的電網(wǎng)故障診斷進(jìn)行分析,針對現(xiàn)有Petri網(wǎng)診斷模型的網(wǎng)絡(luò)適應(yīng)性與不確定信息容錯性問題,提出時序加權(quán)模糊有色Petri網(wǎng)電網(wǎng)故障診斷模型;同時,本文對基于電氣量信息的電網(wǎng)故障診斷進(jìn)行分析,針對HHT對故障電流分析時出現(xiàn)的過包絡(luò)與欠包絡(luò)現(xiàn)象,提出一種改進(jìn)的經(jīng)驗?zāi)B(tài)分解方式,從而改進(jìn)HHT得到更為準(zhǔn)確的診斷結(jié)果;在上述方法的基礎(chǔ)上,本文提出基于D-S證據(jù)理論的電網(wǎng)故障診斷融合模型和基于改進(jìn)C均值算法的診斷決策模型;最后,基于Matlab仿真分析軟件,通過綜合算例仿真分析來驗證本文所提出方法的有效性。
[Abstract]:With the continuous expansion of the scale of the power grid, the interconnection between different regions is becoming more and more close. When the power network fails, the influence of the fault on the system will become more and more serious. Most of the existing fault diagnosis methods are based on switching information such as circuit breaker tripping, protection operation and so on. However, the method of using some intelligent algorithm to process the switch quantity to get the fault diagnosis result has high requirements for the integrity and accuracy of the information of circuit breaker and protection. Different degrees of completeness and accuracy have great influence on the diagnosis results. In this paper, the method of fault diagnosis based on multiple data sources is studied. Firstly, it introduces the research background and the development status at home and abroad; secondly, it introduces the various fault information sources of current power network fault diagnosis; then, this paper analyzes the power network fault diagnosis based on switch quantity information. Aiming at the problem of network adaptability and fault tolerance of uncertain information in existing Petri net diagnosis model, a time-series weighted fuzzy colored Petri net fault diagnosis model is proposed, and the fault diagnosis model based on electrical information is analyzed in this paper. An improved empirical mode decomposition (EMD) method is proposed to solve the overenvelope and underenvelope phenomena in the fault current analysis of HHT, which improves the HHT to get more accurate diagnosis results. In this paper, a fault diagnosis fusion model based on D-S evidence theory and a diagnosis decision model based on improved C-means algorithm are proposed. The effectiveness of the proposed method is verified by a comprehensive example.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM711
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盛華;張桂珠;;一種融合K-means和快速密度峰值搜索算法的聚類方法[J];計算機(jī)應(yīng)用與軟件;2016年10期
2 鐘錦源;張巖;文福拴;楊明;張小易;朱海兵;;利用電氣量和時序信息的改進(jìn)Petri網(wǎng)故障診斷模型[J];電力系統(tǒng)自動化;2015年11期
3 徐巖;張銳;衛(wèi)波;;應(yīng)用數(shù)據(jù)融合的電網(wǎng)故障診斷[J];電力系統(tǒng)及其自動化學(xué)報;2014年11期
4 李乃永;梁軍;李磊;林霞;;基于廣域故障錄波信息的調(diào)度端電網(wǎng)故障診斷系統(tǒng)[J];電力系統(tǒng)自動化;2014年16期
5 張巖;張勇;文福拴;李繼紅;;容納時序約束的改進(jìn)模糊Petri網(wǎng)故障診斷模型[J];電力系統(tǒng)自動化;2014年05期
6 熊國江;石東源;朱林;陳祥文;;基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的電網(wǎng)模糊元胞故障診斷[J];電力系統(tǒng)自動化;2014年05期
7 孫明蔚;童曉陽;劉新宇;甄威;王曉茹;;運用時序貝葉斯知識庫的電網(wǎng)故障診斷方法[J];電網(wǎng)技術(shù);2014年03期
8 黃樹培;鄭紅嬋;閆飛一;胡韻;;3點Binary插值細(xì)分法的性質(zhì)以及應(yīng)用[J];圖學(xué)學(xué)報;2014年01期
9 張巖;張勇;文福拴;孫維真;王超;;融合信息理論的電力系統(tǒng)故障診斷解析模型[J];電力自動化設(shè)備;2014年02期
10 吳文可;文福拴;薛禹勝;周華鋒;李曉露;;基于多源信息的延時約束加權(quán)模糊Petri網(wǎng)故障診斷模型[J];電力系統(tǒng)自動化;2013年24期
,本文編號:1892413
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1892413.html