風電機組變槳系統(tǒng)故障定位的方法研究
本文選題:風電機組 + 變槳系統(tǒng); 參考:《華北電力大學(北京)》2017年碩士論文
【摘要】:世界石化能源危機的日趨明顯,掀起了可再生能源發(fā)展的新潮流,風能作為其中的重要一類,發(fā)展迅速。截止到2015年年底,中國的累計裝機容量為145.4GW,位于世界第一,占全球累計裝機容量的33.6%。這意味著,有超過9萬臺的風機需要后續(xù)至少20年的維護工作,而在這一過程中,風電設備故障診斷將必不可少且非常重要。其中,變槳系統(tǒng)作為風機的功率調(diào)節(jié)與安全制動系統(tǒng),常常隨著風速的變化頻繁變槳,工作環(huán)境惡劣,故障率居高不下。但現(xiàn)有對變槳系統(tǒng)故障診斷的研究文獻較少,現(xiàn)場對風電機組變槳系統(tǒng)的檢測與診斷多依賴于SCADA報警系統(tǒng)。然而,由于SCADA系統(tǒng)沒有綜合考慮變槳系統(tǒng)各子系統(tǒng)以及風機運行參數(shù)間存在的強耦合性,每當其檢測到變槳系統(tǒng)故障時,總是出現(xiàn)一連串的報警信息,隨機且無序,無法確認真正故障源,給故障停機后的維修造成較大的困難。本文針對SCADA系統(tǒng)連鎖報警問題,基于風電場SCADA運行數(shù)據(jù),將Fisher判別分析法引入到變槳系統(tǒng)故障診斷中,形成一種基于FDA貢獻圖的故障源分離方法。該方法通過計算出故障數(shù)據(jù)的偏離方向以及各變量相對于該方向偏離所做的貢獻率,生成FDA貢獻圖,從而甄別出引起故障的主要參變量,實現(xiàn)故障源分離。并通過模擬數(shù)據(jù)和實例數(shù)據(jù)分別進行分析驗證,結(jié)果表明該方法能夠準確的識別出主要故障源,并能夠據(jù)此實現(xiàn)進一步的故障定位,對后續(xù)的故障診斷和制定檢修預案有著重要的指導作用。此外,本文從變槳系統(tǒng)的結(jié)構(gòu)組成及其邏輯關(guān)系出發(fā),繪制出變槳系統(tǒng)的結(jié)構(gòu)拓撲圖及其邏輯關(guān)系圖;然后在此基礎上,分析了變槳系統(tǒng)的故障特性,包括其分布特性、傳遞特性以及表現(xiàn)特性,并在故障傳遞特性中以主要的電源、控制信號及通訊信號三種信號為傳遞路徑繪制出變槳系統(tǒng)各子系統(tǒng)及結(jié)構(gòu)的線路傳遞圖;最后,采用FMEA分析法對變槳系統(tǒng)的故障模式進行系統(tǒng)的分析,從變槳系統(tǒng)的各故障模式出發(fā),通過變槳系統(tǒng)的結(jié)構(gòu)拓撲,傳遞路徑分析,尋找可能的故障原因從而實現(xiàn)故障定位,并形成包括變槳控制系統(tǒng)和執(zhí)行機構(gòu)在內(nèi)的9張FMEA分析表。
[Abstract]:The world petrochemical energy crisis is becoming more and more obvious, which has set off a new trend of renewable energy development. Wind energy, as an important category, is developing rapidly. By the end of 2015, China's cumulative installed capacity was 145.4 GW, ranking first in the world and accounting for 33.6% of the world's cumulative installed capacity. This means that more than 90,000 fans will need to be maintained for at least another 20 years, and in the process, fault diagnosis of wind power equipment will be essential and important. As the power regulation and safety braking system of the fan, the variable propeller system often changes the propeller frequently with the change of the wind speed, the working environment is bad, the failure rate is high. However, there are few literatures on fault diagnosis of variable propeller system, and the detection and diagnosis of variable propeller system of wind turbine mostly depend on SCADA alarm system. However, since the SCADA system does not take into account the strong coupling between the various subsystems of the propeller system and the operational parameters of the fan, a series of alarm messages appear whenever the faults of the propeller system are detected, which is random and disordered. Unable to identify the true source of failure, causing greater difficulty in maintenance after failure. Aiming at the problem of chain alarm in SCADA system, based on the SCADA operation data of wind farm, this paper introduces Fisher discriminant analysis into fault diagnosis of propeller system, and forms a fault source separation method based on FDA contribution diagram. By calculating the deviation direction of the fault data and the contribution rate of each variable relative to this direction, the FDA contribution diagram is generated, and the main parameter variables caused by the fault are identified, and the fault source separation is realized. The results show that the method can identify the main fault sources accurately and realize the further fault location based on the simulation data and the example data. It plays an important role in fault diagnosis and maintenance plan. In addition, the structure topology diagram and its logic relation diagram of the variable propeller system are drawn from the structure composition and logic relation of the variable propeller system, and then the fault characteristics of the variable propeller system, including its distribution characteristics, are analyzed. Transmission characteristics and performance characteristics, and in the fault transmission characteristics of the main power supply, control signal and communication signal as the transmission path to draw out the pitch system subsystem and structure of the line transfer diagram; finally, The fault mode of the variable propeller system is analyzed systematically by using FMEA analysis method. Starting from the various fault modes of the variable propeller system, through the structural topology of the variable propeller system and the analysis of the transmission path, the possible fault causes can be found and the fault location can be realized. Nine FMEA analysis tables including propeller control system and actuator are formed.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM315
【參考文獻】
相關(guān)期刊論文 前10條
1 王紹銘;藏希萌;;永磁直驅(qū)MW級風電機組變槳逆變器故障解析[J];中小企業(yè)管理與科技(下旬刊);2016年04期
2 王紹銘;史家銘;;旋轉(zhuǎn)編碼器在M瓦級風機中的應用及常見故障[J];中小企業(yè)管理與科技(中旬刊);2016年04期
3 姚萬業(yè);李新麗;;基于狀態(tài)監(jiān)測的風電機組變槳系統(tǒng)故障診斷[J];可再生能源;2016年03期
4 郭慧東;王瑋;夏明超;;基于數(shù)據(jù)挖掘的風電機組變槳系統(tǒng)劣化狀態(tài)在線辨識方法[J];中國電機工程學報;2016年09期
5 王衛(wèi)娜;甄冬;張琨;張磊;;基于SCADA數(shù)據(jù)分析的風機變槳故障診斷[J];自動化與儀表;2016年01期
6 咬登尚;蘇小春;謝建成;;1.5MW風力發(fā)電機組變槳電機常見故障分析[J];低碳世界;2016年01期
7 秦洋;馬慧民;朱田瑋;;基于灰色馬爾可夫模型的風機變槳系統(tǒng)故障預測[J];廣東電力;2015年10期
8 李偉昌;張磊;;基于風力發(fā)電系統(tǒng)的風電機組變槳距故障診斷[J];計算機仿真;2015年09期
9 趙洪山;連莎莎;邵玲;;基于模型的風電機組變槳距系統(tǒng)故障檢測[J];電網(wǎng)技術(shù);2015年02期
10 尹詩;余忠源;孟凱峰;李闖;王其樂;;基于非線性狀態(tài)估計的風電機組變槳控制系統(tǒng)故障識別[J];中國電機工程學報;2014年S1期
相關(guān)會議論文 前1條
1 柯劍;孟祥瑞;李皎;;滑環(huán)故障分析及優(yōu)化方案淺析[A];第三屆中國風電后市場專題研討會論文集[C];2016年
相關(guān)博士學位論文 前2條
1 牛征;基于多元統(tǒng)計分析的火電廠控制系統(tǒng)故障診斷研究[D];華北電力大學(河北);2006年
2 黃孝彬;火電廠控制系統(tǒng)故障檢測與診斷的研究[D];華北電力大學(河北);2004年
相關(guān)碩士學位論文 前1條
1 李學偉;基于數(shù)據(jù)挖掘的風電機組狀態(tài)預測及變槳系統(tǒng)異常識別[D];重慶大學;2012年
,本文編號:1863723
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1863723.html