射流冷卻對動力鋰電池組熱環(huán)境控制的模擬研究
發(fā)布時間:2018-03-12 21:21
本文選題:動力鋰電池組 切入點:CFD 出處:《中原工學(xué)院》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:動力鋰電池以優(yōu)良的性能表現(xiàn)在電子設(shè)備、工業(yè)產(chǎn)品、交通工具等領(lǐng)域被作為其核心部件廣泛應(yīng)用。在能源與環(huán)境問題越來越被重視的當(dāng)今社會,電動汽車的技術(shù)公關(guān)與市場推廣已成為各國關(guān)注的焦點。而作為其動力源的動力電池,制約以動力與速度為追求的電動汽車行業(yè)的健康發(fā)展。然而在電動汽車上,由于電池的能量密度低,在運用到電動汽車上作為動力來源時,動力電池必須組成大密度的成組結(jié)構(gòu)形式為電動汽車提供了足夠動力。組成電池組系統(tǒng)后的電池單體由于空間的限制排布緊密,導(dǎo)致在隨后的使用過程中電池單體所散發(fā)出的熱量聚集,且不易消除,這必然引起電池系統(tǒng)內(nèi)部溫度過高,也可能使電池組內(nèi)的溫度分布產(chǎn)生不一致。為解決動力電池系統(tǒng)在使用過程中出現(xiàn)的過熱與溫度不均的問題,本文進行了電池組熱環(huán)境控制方法的研究,主要內(nèi)容與結(jié)論如下:本文對動力鋰電池系統(tǒng)的工作原理、成組構(gòu)成與產(chǎn)熱原理進行了研究分析,建立鋰離子電池?zé)嵝?yīng)模型,確定了動力鋰電池組熱環(huán)境控制的研究方法;诰鶆蛩惋L(fēng)理論方法的研究分析,完成了利用射流沖擊原理的強化散熱冷卻系統(tǒng)的設(shè)計。使用CFD數(shù)值模擬方法,對本文提出的大容量鋰電池系統(tǒng)熱環(huán)境控制方案進行詳細(xì)研究,分析其對熱環(huán)境的影響與作用效果。建立了均勻送風(fēng)模塊、送風(fēng)模塊控制單元與裝配有完整的送風(fēng)模塊的電池組系統(tǒng)三種數(shù)值模型,分別從送風(fēng)狀態(tài)、送風(fēng)參數(shù)、電池組模塊溫度場、壓力場、氣流組織等不同的角度對此射流強化散熱方案進行研究分析,進行優(yōu)化。對送風(fēng)模塊每支風(fēng)道所控制的電池組單元的熱環(huán)境進行數(shù)值模擬結(jié)果表明,多種送風(fēng)工況下電池組最高溫度為307.19K,最低溫度306.53K,溫差為0.65K,都遠(yuǎn)低于控制值,說明送風(fēng)模塊對電池組系統(tǒng)散熱的改善效果是非常明顯的。在此模型的基礎(chǔ)上,分析了送風(fēng)參數(shù)對電池組熱環(huán)境的影響,增大通風(fēng)冷卻系統(tǒng)的風(fēng)量能夠降低電池組系統(tǒng)的最高溫度與電池組系統(tǒng)內(nèi)的溫度差,但是僅改變送風(fēng)溫度難以到達(dá)控制電池組間溫度差異的效果。對裝配有完整的送風(fēng)模塊的電池組系統(tǒng)模型進行了數(shù)值模擬計算,確定了散熱模塊最優(yōu)的氣流組織形式。該模塊在電池組系統(tǒng)的終溫與溫度均勻性控制性上均有良好表現(xiàn),驗證了帶有射流強化散熱模塊對鋰離子電池系統(tǒng)熱環(huán)境的控制效果。本課題的研究內(nèi)容為動力鋰電池組熱環(huán)境的控制提供了新方法,該研究成果可以作為實際運用的參考與依據(jù)。
[Abstract]:Power lithium battery is widely used as its core components in the fields of electronic equipment, industrial products, transportation and so on with its excellent performance. Nowadays, more and more attention is paid to energy and environment problems. The technical public relations and marketing of electric vehicles have become the focus of attention all over the world. As a source of power, the power battery restricts the healthy development of the electric vehicle industry, which is pursued by power and speed. However, in electric vehicles, Because of the low energy density of the battery, when applied to an electric vehicle as a power source, The battery must form a large density structure that provides enough power for the electric vehicle. The cells behind the battery pack system are tightly arranged due to space constraints. Resulting in the subsequent use of the battery monomer from the heat accumulation, and difficult to eliminate, which must lead to the battery system internal temperature is too high, In order to solve the problem of overheating and uneven temperature in power cell system, the method of controlling the thermal environment of battery pack is studied in this paper. The main contents and conclusions are as follows: in this paper, the working principle, group composition and heat production principle of power lithium battery system are studied and analyzed, and the thermal effect model of lithium ion battery is established. The research method of thermal environment control of power lithium battery pack is determined. Based on the research and analysis of uniform air supply theory, the design of enhanced cooling system based on jet impingement principle is completed. The CFD numerical simulation method is used. The thermal environment control scheme of large capacity lithium battery system proposed in this paper is studied in detail, and its influence and effect on thermal environment are analyzed. A uniform air supply module is established. The control unit of the air supply module and the battery pack system equipped with the complete air supply module have three numerical models, from the air supply state, the air supply parameters, the temperature field of the battery pack module, the pressure field, respectively. At different angles, such as airflow organization, the enhanced heat dissipation scheme of jet is studied and optimized. The numerical simulation results of the thermal environment of the battery pack unit controlled by each air duct in the air supply module show that, The maximum temperature of the battery pack is 307.19K, the lowest temperature is 306.53K, and the temperature difference is 0.65K, which is far below the control value, which shows that the effect of the air supply module on the heat dissipation of the battery pack system is very obvious. The influence of air supply parameters on the thermal environment of the battery pack is analyzed. The maximum temperature of the battery pack system and the temperature difference in the battery pack system can be reduced by increasing the air volume of the ventilation cooling system. However, it is difficult to achieve the effect of controlling the temperature difference between batteries by changing the air temperature. The numerical simulation of the battery pack system model with complete air supply module is carried out. The optimal airflow pattern of the heat dissipation module is determined. The module has good performance in controlling the final temperature and temperature uniformity of the battery pack system. The control effect of the heat dissipation module with jet enhancement on the thermal environment of the lithium ion battery system is verified. The research content of this paper provides a new method for the thermal environment control of the power lithium battery pack. The research results can be used as a reference and basis for practical application.
【學(xué)位授予單位】:中原工學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912;U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊勝義;;淺談新能源汽車及其應(yīng)用[J];時代汽車;2016年08期
2 巴斯夫;;未來的交通[J];汽車與配件;2016年15期
3 歐陽明高;;中國新能源汽車的研發(fā)及展望[J];科技導(dǎo)報;2016年06期
4 宋士剛;李小平;;電動汽車鋰離子電池釋熱機理及電熱耦合模型[J];電源技術(shù);2016年02期
5 張新強;洪思慧;汪雙鳳;;增設(shè)通風(fēng)孔的風(fēng)冷式鋰離子電池?zé)峁芾硐到y(tǒng)數(shù)值研究[J];新能源進展;2015年06期
6 程昀;李R,
本文編號:1603336
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1603336.html
最近更新
教材專著