不同封堵場(chǎng)景下火源位置對(duì)隧道火災(zāi)行為影響的數(shù)值模擬研究
發(fā)布時(shí)間:2021-10-26 16:48
地下隧道發(fā)生火災(zāi)時(shí),火災(zāi)煙氣的吸入會(huì)對(duì)人員的生命安全構(gòu)成直接威脅,對(duì)火行為的了解是做出有效決策的關(guān)鍵。以往對(duì)隧道火災(zāi)動(dòng)力學(xué)的研究多設(shè)定隧道兩端均處于開(kāi)口狀態(tài)的通風(fēng)條件。在列車(chē)車(chē)廂火災(zāi)、在建隧道火災(zāi)、隧道走廊火災(zāi)等特殊隧道火災(zāi)場(chǎng)景下,隧道兩端可能會(huì)完全或不完全地被阻塞或封閉,這將嚴(yán)重干擾隧道內(nèi)部通風(fēng)和火災(zāi)煙氣蔓延的情況。目前,針對(duì)隧道狹長(zhǎng)空間兩端端部封堵?tīng)顟B(tài)下火災(zāi)行為的研究非常有限;谟(jì)算機(jī)的模擬仿真工作在評(píng)估隧道火災(zāi)的后果方面是非常有用、靈活和低成本的。本研究利用火災(zāi)動(dòng)力學(xué)模擬軟件(FDS)來(lái)評(píng)估全尺寸隧道內(nèi)的火災(zāi)特性,開(kāi)展了一系列數(shù)值模擬工作,以研究在不同火災(zāi)位置、封堵時(shí)間及封堵入口比的綜合作用下的火災(zāi)行為,探測(cè)并計(jì)算得到了一系列特征參數(shù),如火源上方溫度,縱向煙氣溫度分布,縱向氧氣分布,火源附近的熱通量,入口處的CO濃度以及入口處的煙氣溫度等。研究結(jié)果表明,火源上方的溫度隨著火源遠(yuǎn)離隧道中心及入口處封堵的實(shí)施而降低,而峰值增加,最大值出現(xiàn)在不對(duì)等封堵的情況下(75%,100%),并且封堵時(shí)間越早,溫度達(dá)到峰值的時(shí)間越短然后下降。當(dāng)火源放置在隧道中央并且火源兩側(cè)對(duì)稱(chēng)封堵時(shí),縱向煙氣溫...
【文章來(lái)源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:105 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Research Background
1.1.1 Tunnel Structure
1.1.2 Tunnels in World
1.1.3 Tunnel types and historical fire incidents
1.2 Fire Control Systems
1.2.1 Natural smoke exhaust system
1.2.2 Mechanical smoke exhaust system
1.2.3 Water-based systems
1.2.4 Sealing of entrances
1.3 Aim of the Thesis
1.4 Thesis Structure
Chapter 2 Literature review of tunnel fire
2.1 Introduction
2.2 Fire Characteristics in Tunnels
2.3 HRR of Tunnel Fire
2.3.1 Measuring technique
2.3.2 Influence of tunnel geometry
2.3.3 Influence of ventilation conditions
2.4 Fundamental research work done in the tunnel
2.4.1 Smoke lift and transmission
2.4.2 Maximum temperature above fire source
2.4.3 Longitudinal temperature distribution
2.4.4 Other research work done in tunnels
2.5 Tunnel fire with plugging portals
Chapter 3 Introduction to FDS and FDS work done
3.1 Introduction
3.1.1 Surfaces
3.1.2 Smokeview
3.1.3 Pyrosim
3.2 Corresponding equations
3.3 FDS fire modeling
3.3.1 Combustion model
3.3.2 Turbulence model
3.3.3 Smoke generation
3.3.4 Mesh sizing
3.3.5 Output data measuring devices
3.3.6 Limitations
3.4 Fire modeling approach in this thesis
3.4.1 Froude Scaling Law
3.4.2 Domain and mesh resolution
3.4.3 Geometry of tunnel
3.4.4 Verification of FDS modeling
3.4.5 Grid sensitivity analysis
3.4.6 Numerical cases
Chapter 4 Effect of different fire locations
4.1 No sealing case
4.1.1 Temperature above fire source
4.1.2 Longitudinal smoke temperature distribution
4.1.3 Heat flux near the fire source
4.1.4 CO concentration at the left entrance
4.1.5 Longitudinal Oxygen distribution
4.1.6 Smoke temperature at the entrance
4.2 When the entrance is sealed 75%,75% simultaneously
4.2.1 Temperature above fire source
4.2.2 Longitudinal smoke temperature distribution
4.2.3 Heat flux near the fire source
4.2.4 CO concentration at the left entrance
4.2.5 Longitudinal Oxygen distribution
4.2.6 Smoke temperature at the entrance
4.3 When entrances are sealed 75%,100%
4.3.1 Temperature above fire source
4.3.2 Longitudinal smoke temperature distribution
4.3.3 Heat flux near the fire source
4.3.4 CO concentration at the left entrance
4.3.5 Longitudinal Oxygen distribution
4.3.6 Smoke temperature at the entrance
4.4 When the entrance is sealed 100%, 100% simultaneously
4.4.1 Temperature above fire source
4.4.2 Longitudinal smoke temperature distribution
4.4.3 Heat flux near the fire source
4.4.4 CO concentration at the left entrance
4.4.5 Longitudinal Oxygen distribution
4.4.6 Smoke temperature at the entrance
4.5 Summary
Chapter 5 Effect of different sealing ratios
5.1 When fire source is located at center x=0
5.1.1 Temperature above fire source
5.1.2 Longitudinal smoke temperature distribution
5.1.3 Heat flux near the fire source
5.1.4 CO concentration at the left entrance
5.1.5 Longitudinal Oxygen distribution
5.1.6 Smoke temperature at the entrance
5.2 When fire source is located at x=-20
5.2.1 Temperature above fire source
5.2.2 Longitudinal smoke temperature distribution
5.2.3 Heat flux near the fire source
5.2.4 CO concentration at the left entrance
5.2.5 Longitudinal Oxygen distribution
5.2.6 Smoke temperature at the entrance
5.3 When fire source is located at x=-40
5.3.1 Temperature above fire source
5.3.2 Longitudinal smoke temperature distribution
5.3.3 Heat flux near the fire source
5.3.4 CO concentration at the left entrance
5.3.5 Longitudinal Oxygen distribution
5.3.6 Smoke temperature at the entrance
5.4 Summary
Chapter 6 Effect of different sealing time
6.1 When fire source is located at center x=0
6.1.1 Temperature above fire source
6.1.2 Longitudinal smoke temperature distribution
6.1.3 Heat flux near the fire source
6.1.4 CO concentration at the left entrance
6.1.5 Longitudinal Oxygen distribution
6.1.6 Smoke temperature at the entrance
6.2 When fire source is located at x=-20
6.2.1 Temperature above fire source
6.2.2 Longitudinal smoke temperature distribution
6.2.3 Heat flux near the fire source
6.2.4 CO concentration at the left entrance
6.2.5 Longitudinal Oxygen Distribution
6.2.6 Smoke temperature at the entrance
6.3 When fire source is located at x=-40
6.3.1 Temperature above fire source
6.3.2 Longitudinal smoke temperature distribution
6.3.3 Heat flux near the fire source
6.3.4 CO concentration at the left entrance
6.3.5 Longitudinal Oxygen Distribution
6.3.6 Smoke temperature at the entrance
6.4 Summary
Chapter 7 Conclusions and Future recommendations
7.1 Conclusions
7.2 Future recommendations
References
Acknowledgement
Research Achievements
【參考文獻(xiàn)】:
期刊論文
[1]封堵戰(zhàn)術(shù)在鐵路隧道火災(zāi)撲救中的運(yùn)用[J]. 李來(lái)保,王永西,張益民. 消防科學(xué)與技術(shù). 2011(10)
本文編號(hào):3459854
【文章來(lái)源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:105 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Research Background
1.1.1 Tunnel Structure
1.1.2 Tunnels in World
1.1.3 Tunnel types and historical fire incidents
1.2 Fire Control Systems
1.2.1 Natural smoke exhaust system
1.2.2 Mechanical smoke exhaust system
1.2.3 Water-based systems
1.2.4 Sealing of entrances
1.3 Aim of the Thesis
1.4 Thesis Structure
Chapter 2 Literature review of tunnel fire
2.1 Introduction
2.2 Fire Characteristics in Tunnels
2.3 HRR of Tunnel Fire
2.3.1 Measuring technique
2.3.2 Influence of tunnel geometry
2.3.3 Influence of ventilation conditions
2.4 Fundamental research work done in the tunnel
2.4.1 Smoke lift and transmission
2.4.2 Maximum temperature above fire source
2.4.3 Longitudinal temperature distribution
2.4.4 Other research work done in tunnels
2.5 Tunnel fire with plugging portals
Chapter 3 Introduction to FDS and FDS work done
3.1 Introduction
3.1.1 Surfaces
3.1.2 Smokeview
3.1.3 Pyrosim
3.2 Corresponding equations
3.3 FDS fire modeling
3.3.1 Combustion model
3.3.2 Turbulence model
3.3.3 Smoke generation
3.3.4 Mesh sizing
3.3.5 Output data measuring devices
3.3.6 Limitations
3.4 Fire modeling approach in this thesis
3.4.1 Froude Scaling Law
3.4.2 Domain and mesh resolution
3.4.3 Geometry of tunnel
3.4.4 Verification of FDS modeling
3.4.5 Grid sensitivity analysis
3.4.6 Numerical cases
Chapter 4 Effect of different fire locations
4.1 No sealing case
4.1.1 Temperature above fire source
4.1.2 Longitudinal smoke temperature distribution
4.1.3 Heat flux near the fire source
4.1.4 CO concentration at the left entrance
4.1.5 Longitudinal Oxygen distribution
4.1.6 Smoke temperature at the entrance
4.2 When the entrance is sealed 75%,75% simultaneously
4.2.1 Temperature above fire source
4.2.2 Longitudinal smoke temperature distribution
4.2.3 Heat flux near the fire source
4.2.4 CO concentration at the left entrance
4.2.5 Longitudinal Oxygen distribution
4.2.6 Smoke temperature at the entrance
4.3 When entrances are sealed 75%,100%
4.3.1 Temperature above fire source
4.3.2 Longitudinal smoke temperature distribution
4.3.3 Heat flux near the fire source
4.3.4 CO concentration at the left entrance
4.3.5 Longitudinal Oxygen distribution
4.3.6 Smoke temperature at the entrance
4.4 When the entrance is sealed 100%, 100% simultaneously
4.4.1 Temperature above fire source
4.4.2 Longitudinal smoke temperature distribution
4.4.3 Heat flux near the fire source
4.4.4 CO concentration at the left entrance
4.4.5 Longitudinal Oxygen distribution
4.4.6 Smoke temperature at the entrance
4.5 Summary
Chapter 5 Effect of different sealing ratios
5.1 When fire source is located at center x=0
5.1.1 Temperature above fire source
5.1.2 Longitudinal smoke temperature distribution
5.1.3 Heat flux near the fire source
5.1.4 CO concentration at the left entrance
5.1.5 Longitudinal Oxygen distribution
5.1.6 Smoke temperature at the entrance
5.2 When fire source is located at x=-20
5.2.1 Temperature above fire source
5.2.2 Longitudinal smoke temperature distribution
5.2.3 Heat flux near the fire source
5.2.4 CO concentration at the left entrance
5.2.5 Longitudinal Oxygen distribution
5.2.6 Smoke temperature at the entrance
5.3 When fire source is located at x=-40
5.3.1 Temperature above fire source
5.3.2 Longitudinal smoke temperature distribution
5.3.3 Heat flux near the fire source
5.3.4 CO concentration at the left entrance
5.3.5 Longitudinal Oxygen distribution
5.3.6 Smoke temperature at the entrance
5.4 Summary
Chapter 6 Effect of different sealing time
6.1 When fire source is located at center x=0
6.1.1 Temperature above fire source
6.1.2 Longitudinal smoke temperature distribution
6.1.3 Heat flux near the fire source
6.1.4 CO concentration at the left entrance
6.1.5 Longitudinal Oxygen distribution
6.1.6 Smoke temperature at the entrance
6.2 When fire source is located at x=-20
6.2.1 Temperature above fire source
6.2.2 Longitudinal smoke temperature distribution
6.2.3 Heat flux near the fire source
6.2.4 CO concentration at the left entrance
6.2.5 Longitudinal Oxygen Distribution
6.2.6 Smoke temperature at the entrance
6.3 When fire source is located at x=-40
6.3.1 Temperature above fire source
6.3.2 Longitudinal smoke temperature distribution
6.3.3 Heat flux near the fire source
6.3.4 CO concentration at the left entrance
6.3.5 Longitudinal Oxygen Distribution
6.3.6 Smoke temperature at the entrance
6.4 Summary
Chapter 7 Conclusions and Future recommendations
7.1 Conclusions
7.2 Future recommendations
References
Acknowledgement
Research Achievements
【參考文獻(xiàn)】:
期刊論文
[1]封堵戰(zhàn)術(shù)在鐵路隧道火災(zāi)撲救中的運(yùn)用[J]. 李來(lái)保,王永西,張益民. 消防科學(xué)與技術(shù). 2011(10)
本文編號(hào):3459854
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/3459854.html
最近更新
教材專(zhuān)著