柔性中壓直流電氣化鐵路系統(tǒng)雜散電流與鋼軌電位研究
發(fā)布時間:2021-10-17 10:17
柔性中壓直流電氣化鐵路系統(tǒng)(RES)具有設計簡單、成本效益高以及對供電質量和配電網(wǎng)危害小等優(yōu)點,可作為未來高速鐵路供電的一種方案。本文對柔性中壓直流電氣化鐵路系統(tǒng)的電壓等級選擇與運行過程中的雜散電流和鋼軌電位兩個方面的重要內容開展了研究。首先,考慮影響系統(tǒng)電壓等級的各種因素討論了其電壓等級的選擇。同時,對其怎樣影響系統(tǒng)電壓等級的選擇進行了定義和詳細說明。通過簡單的算法選擇了合適的電壓等級,并驗證了在該電壓等級下的系統(tǒng)性能。其次,對雜散電流進行深入研究。文章對雜散電流的產(chǎn)生原因,分布以及其影響進行了詳細介紹。雜散電流的主要危害是腐蝕埋在軌道附近的金屬結構。因此,詳細介紹了雜散電流的腐蝕機理,并對雜散電流沿軌道的分布進行研究。進一步地,通過介紹鋼軌電位控制裝置對鋼軌電位的理論知識進行了闡述。為了驗證理論分析的正確性,本文利用MATLAB/Simulink仿真軟件建立仿真模型并對軌道的雜散電流分布、鋼軌電位控制裝置的應用及其對雜散電流的影響進行了仿真分析。除此之外,還對雜散電流的控制方案以及雜散電流排流網(wǎng)的應用進行了介紹。最后,對本文的主要研究工作及不足進行了總結,并對后續(xù)研究工作進行了展望...
【文章來源】:西南交通大學四川省 211工程院校 教育部直屬院校
【文章頁數(shù)】:74 頁
【學位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 RAILWAY ELECTRIFICATION
1.2 TYPES OF RAILWAY ELECTRIFICATION
1.3 HIGH-SPEED RAILWAY ELECTRIFICATION
1.4 THE RECENT CONCEPT OF MVDC RES
1.5 SIGNIFICANCE OF THE STUDY
1.6 Related Works
1.7 ORGANIZATION OF THE THESIS
CHAPTER 2: SELECTION OF NOMINAL VOLTAGE LEVEL
2.1 INTRODUCTION
2.2 CONSIDERATIONS FOR THE CHOICE OF NOMINAL VOLTAGE
2.2.1 Stray Current
2.2.2 Rail to Ground Voltage
2.2.3 Operating Temperature of Overhead Lines
2.2.4 Overhead Line Cross-Section
2.2.5 Minimum Voltage Level
2.2.6 Train Traffic
2.2.7 Sub-Station Spacing
2.2.8 Train Speed
2.2.9 Circuit Breaker
2.2.10 Series Connection of Power Electronic Devices
2.2.11 Insulation level
2.2.12 Voltage level of Integrating Systems
2.3 CLASSIFICATION
2.4 METHOD TO GET A NOMINAL VOLTAGE
2.5 CALCULATION AND SIMULATION
2.6 SUMMARY
CHAPTER 3: STRAY CURRENT AND ITS DYNAMICS
3.1 STRAY CURRENT
3.1.1 Definition
3.1.2 Historical Background of Stray Current in DC Traction System
3.1.3 How it is Generated
3.1.4 Stray Current Interference
3.2 STRAY CURRENT CORROSION AS ELECTROLYSIS PROCESS
3.3 FARADAY’S LAW AND STRAY CURRENT PARAMETERS
3.3.1 Total Stray Current
3.3.2 Gross Leakage Charge
3.3.3 Mean Total Stray Current:
3.4 RAIL TO GROUND POTENTIAL
3.5 NUMERICAL CALCULATION MODEL
3.5.1 Method I
3.5.2 Method II
3.5.3 Novel Calculation Method
3.6 CONDITIONS REQUIRED FOR THE METALLIC STRUCTURE TO PICK UP THE STRAY CURRENT
3.7 SOME FAVORABLE EFFECT OF STRAY CURRENT
3.8 RAIL POTENTIAL CONTROL DEVICE (RPCD)
CHAPTER 4: STRAY CURRENT CONTROL TECHNIQUE
4.1 DISTRIBUTION OF STRAY CURRENT IN DIFFERENT MEDIUMS
4.2 STRAY CURRENT WITH DISTRIBUTED TRAFFIC IN RAILWAY LINES
4.3 CORROSION MANAGEMENT PHILOSOPHY
4.4 RAILWAY EARTHING SCHEMES
4.5 STRAY CURRENT COLLECTION SYSTEM
4.6 VARIOUS STRAY CONTROL SCHEMES
4.6.1 Electrical Drainage Bond
4.6.2 Electrical Shield
4.6.3 Intentional Anodes and Cathodic Protection (CP)
4.7 STRAY CURRENT WHEN RPCD IS USED
CONCLUSION AND RECOMMENDATION FOR FUTURE WORK
SUGGESTIONS FOR FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES
APPENDIX 1
【參考文獻】:
期刊論文
[1]Adaptive droop control for better current-sharing in VSC-based MVDC railway electrification system[J]. Salman AATIF,Haitao HU,Xiaowei YANG,Yinbo GE,Zhengyou HE,Shibin GAO. Journal of Modern Power Systems and Clean Energy. 2019(04)
[2]鋼軌電位限制裝置優(yōu)化控制[J]. 劉建華,劉旭,李艷. 電測與儀表. 2014(14)
本文編號:3441592
【文章來源】:西南交通大學四川省 211工程院校 教育部直屬院校
【文章頁數(shù)】:74 頁
【學位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 RAILWAY ELECTRIFICATION
1.2 TYPES OF RAILWAY ELECTRIFICATION
1.3 HIGH-SPEED RAILWAY ELECTRIFICATION
1.4 THE RECENT CONCEPT OF MVDC RES
1.5 SIGNIFICANCE OF THE STUDY
1.6 Related Works
1.7 ORGANIZATION OF THE THESIS
CHAPTER 2: SELECTION OF NOMINAL VOLTAGE LEVEL
2.1 INTRODUCTION
2.2 CONSIDERATIONS FOR THE CHOICE OF NOMINAL VOLTAGE
2.2.1 Stray Current
2.2.2 Rail to Ground Voltage
2.2.3 Operating Temperature of Overhead Lines
2.2.4 Overhead Line Cross-Section
2.2.5 Minimum Voltage Level
2.2.6 Train Traffic
2.2.7 Sub-Station Spacing
2.2.8 Train Speed
2.2.9 Circuit Breaker
2.2.10 Series Connection of Power Electronic Devices
2.2.11 Insulation level
2.2.12 Voltage level of Integrating Systems
2.3 CLASSIFICATION
2.4 METHOD TO GET A NOMINAL VOLTAGE
2.5 CALCULATION AND SIMULATION
2.6 SUMMARY
CHAPTER 3: STRAY CURRENT AND ITS DYNAMICS
3.1 STRAY CURRENT
3.1.1 Definition
3.1.2 Historical Background of Stray Current in DC Traction System
3.1.3 How it is Generated
3.1.4 Stray Current Interference
3.2 STRAY CURRENT CORROSION AS ELECTROLYSIS PROCESS
3.3 FARADAY’S LAW AND STRAY CURRENT PARAMETERS
3.3.1 Total Stray Current
3.3.2 Gross Leakage Charge
3.3.3 Mean Total Stray Current:
3.4 RAIL TO GROUND POTENTIAL
3.5 NUMERICAL CALCULATION MODEL
3.5.1 Method I
3.5.2 Method II
3.5.3 Novel Calculation Method
3.6 CONDITIONS REQUIRED FOR THE METALLIC STRUCTURE TO PICK UP THE STRAY CURRENT
3.7 SOME FAVORABLE EFFECT OF STRAY CURRENT
3.8 RAIL POTENTIAL CONTROL DEVICE (RPCD)
CHAPTER 4: STRAY CURRENT CONTROL TECHNIQUE
4.1 DISTRIBUTION OF STRAY CURRENT IN DIFFERENT MEDIUMS
4.2 STRAY CURRENT WITH DISTRIBUTED TRAFFIC IN RAILWAY LINES
4.3 CORROSION MANAGEMENT PHILOSOPHY
4.4 RAILWAY EARTHING SCHEMES
4.5 STRAY CURRENT COLLECTION SYSTEM
4.6 VARIOUS STRAY CONTROL SCHEMES
4.6.1 Electrical Drainage Bond
4.6.2 Electrical Shield
4.6.3 Intentional Anodes and Cathodic Protection (CP)
4.7 STRAY CURRENT WHEN RPCD IS USED
CONCLUSION AND RECOMMENDATION FOR FUTURE WORK
SUGGESTIONS FOR FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES
APPENDIX 1
【參考文獻】:
期刊論文
[1]Adaptive droop control for better current-sharing in VSC-based MVDC railway electrification system[J]. Salman AATIF,Haitao HU,Xiaowei YANG,Yinbo GE,Zhengyou HE,Shibin GAO. Journal of Modern Power Systems and Clean Energy. 2019(04)
[2]鋼軌電位限制裝置優(yōu)化控制[J]. 劉建華,劉旭,李艷. 電測與儀表. 2014(14)
本文編號:3441592
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/3441592.html