基于規(guī)劃求解的組合預(yù)測(cè)模型在道路客運(yùn)量預(yù)測(cè)中的應(yīng)用
[Abstract]:In order to forecast the future development trend of road passenger traffic, a more accurate forecasting model is established. Based on the analysis of the main forecasting methods, a combined forecasting model based on programming solution is proposed. Based on the grey model, univariate regression and exponential smoothing three forecasting methods, the objective function is established, which is the sum of the absolute value of the difference between the weighted sum of the predicted value over the years and the difference between the actual value and the sum of the absolute value as the objective function. The programming solution model is based on the sum of the non-negative weight coefficient and the weight coefficient 1. In the process of weight calculation, the value of objective function decreases gradually with the increase of iteration times. By observing the change value of objective function value, when the change value of objective function appears inflection point, the method of determining the iteration number of combined weight is defined. Based on the data of "Baicheng and 100 stations" which is more representative, a combined forecast model of passenger volume for road passenger transport is established. In the process of planning and solving, the function of "programming solving" in Excel is used. The experimental results show that with the increase of the number of iterations, the change value of the objective function decreases gradually. When the number of iterations is 7, the inflection point of the change value of the objective function appears, and the number of iterations is determined. The absolute errors of the three traditional prediction methods are 1.26,0.48 and 2.98, respectively. The absolute error of the combined forecasting model based on programming solution is 0.12. the prediction precision is higher and the error is smaller, and the combined forecasting model is easy to operate. The uncertainty of single model prediction can be reduced, and the future road passenger traffic can be predicted according to the above model.
【作者單位】: 交通運(yùn)輸部科學(xué)研究院;
【基金】:交通運(yùn)輸部建設(shè)科技項(xiàng)目(2015 318 J36 110) 交通運(yùn)輸戰(zhàn)略規(guī)劃政策研究項(xiàng)目(2016-1-4) 中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)項(xiàng)目(2016 6110)
【分類號(hào)】:U492.413
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張欣;;組合預(yù)測(cè)模型在上海內(nèi)河港口吞吐量預(yù)測(cè)中的應(yīng)用[J];水運(yùn)工程;2007年04期
2 張維朋;;組合預(yù)測(cè)模型在寧波港口集裝箱吞吐量的預(yù)測(cè)研究[J];科技通報(bào);2012年05期
3 楊新倉(cāng);李楓;;組合預(yù)測(cè)模型在公路客運(yùn)量預(yù)測(cè)中的應(yīng)用[J];山西建筑;2012年04期
4 郁小鋒;余靜;;組合預(yù)測(cè)模型在港口物流量預(yù)測(cè)中的應(yīng)用[J];中國(guó)水運(yùn)(下半月);2008年06期
5 林安東;基于誤差絕對(duì)值之加權(quán)和最小的組合預(yù)測(cè)模型及其應(yīng)用[J];上海海運(yùn)學(xué)院學(xué)報(bào);2000年03期
6 孫慧慧;;組合預(yù)測(cè)模型在北京市汽車擁有量預(yù)測(cè)中的應(yīng)用[J];淮陰師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年04期
7 童明榮;薛恒新;林琳;;基于最優(yōu)組合預(yù)測(cè)模型的港口集裝箱吞吐量預(yù)測(cè)[J];技術(shù)經(jīng)濟(jì);2006年12期
8 張凱;盧鄒穎;;短時(shí)車流量組合預(yù)測(cè)模型[J];南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
9 劉啟文;林鋼;林吾思;;基于MATLAB的組合模型在港口吞吐量預(yù)測(cè)中的應(yīng)用[J];水運(yùn)工程;2008年11期
10 張?jiān)瓶?張曉宇;;組合預(yù)測(cè)模型在寧波港集裝箱吞吐量預(yù)測(cè)中的應(yīng)用[J];中國(guó)水運(yùn)(下半月);2008年01期
相關(guān)會(huì)議論文 前1條
1 謝正文;孔凡玉;胡毅夫;;基于熵權(quán)的沉降組合預(yù)測(cè)模型及應(yīng)用[A];第一屆中國(guó)水利水電巖土力學(xué)與工程學(xué)術(shù)討論會(huì)論文集(下冊(cè))[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 于志恒;基于智能理論的交通流量組合預(yù)測(cè)模型研究[D];東北師范大學(xué);2016年
2 趙川;重載交通對(duì)高速公路橋梁的疲勞影響研究[D];河北工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 王超;組合預(yù)測(cè)模型在集裝箱生成量預(yù)測(cè)中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2009年
2 陳珂;傳感器網(wǎng)絡(luò)技術(shù)在隧道變形監(jiān)測(cè)中的應(yīng)用研究[D];西南交通大學(xué);2013年
,本文編號(hào):2437528
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2437528.html