基于數(shù)據(jù)挖掘技術(shù)的駕駛行為分析
[Abstract]:Automobile has become the most popular means of transportation, and the number of traffic accidents in China reaches to millions every year, resulting in huge casualties and property losses, so it is of great significance to study the prevention of traffic accidents. In the environment where vehicle design and road construction have been difficult to make a breakthrough in accident prevention, more and more attention has been paid to the study of driver's driving behavior. However, there is still a lack of unified quantitative indicators to describe driving behavior habits, and the research results of evaluating driving safety level by quantitative indicators are few and far between. Therefore, based on OBD (On-Board Diagnostics: vehicle Diagnostic system) technology, the driving behavior habits are analyzed from five dimensions: driving stroke, operation type, driving speed, driving acceleration and engine speed. The quantitative index of driving behavior is extracted by using the vehicle running data collected for a long time and the driving behavior habit has the characteristics of long-term stability and invariance. The data in this study are derived from the driving data of ordinary drivers collected by "excellent driving Smart Box" for more than 2 years, and the main driving regions of these drivers are in Chongqing area. The "superior driving smart box" obtains the driving data of the vehicle through the OBD interface that the vehicle generally has, and then connects with the smartphone through Bluetooth, displays the important data on the smartphone and passes the driving operation data to the server. Enables each driver's vehicle operation data to be kept without interruption. At present, most of the cars in the market use the international standard of OBD II, which makes the "superior driving intelligent box" can obtain the data of different manufacturers and different models of vehicles in real time through the OBD interface. With the development of OBD technology, the number of vehicle running data is increasing. In this paper, the vehicle running data related to driving behavior are extracted from five dimensions, and 57 indexes are obtained by transformation. The time series stability analysis method in financial field is introduced to test the stability of these 57 indexes. A total of 17 indexes satisfying stability were obtained, which were used as quantitative indicators of driving behavior. On the basis of the extracted quantitative index of driving behavior, the driver classification research is also carried out. The results show that the driver with different driving behavior characteristics can be distinguished by using the driving behavior quantification index to classify driver. This study provides a theoretical basis for the quantitative study of driving behavior and a new way of thinking and method for the study of accident tendency. The analytical data obtained by the OBD method is easier to obtain than the traditional experimental data, and the results of the analysis are more realistic and practical.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491.25
【參考文獻】
相關(guān)期刊論文 前10條
1 張茜;楊佩釗;嚴慈磊;范起飛;;我國道路交通事故人因分析[J];汽車實用技術(shù);2016年06期
2 劉萌;鄒忠義;黃斐;;基于熵權(quán)AHP理論的駕駛傾向性辨識評價方法[J];公安海警學(xué)院學(xué)報;2016年01期
3 林濱;;K-Means聚類的多種距離計算方法的文本實驗比較[J];福建工程學(xué)院學(xué)報;2016年01期
4 沈后功;周凱;;2015年全國機動車和駕駛?cè)搜该驮鲩L 新增汽車1781多萬汽車保有量增長創(chuàng)歷史新高[J];汽車與安全;2016年02期
5 楊松;;危險駕駛行為對道路交通流特性的影響分析[J];公路交通科技(應(yīng)用技術(shù)版);2016年01期
6 姜軍;陸建;;駕駛經(jīng)驗和氣質(zhì)類型對駕駛行為的影響分析[J];交通信息與安全;2015年03期
7 祁鈺茜;吳超仲;高嵩;彭理群;;基于AHP和物元分析的憤怒駕駛狀態(tài)辨識研究[J];交通信息與安全;2015年02期
8 肖將;秦雅琴;王圓圓;李海瓊;;基于駕駛模擬實驗的駕駛員氣質(zhì)與駕駛行為關(guān)系研究[J];人類工效學(xué);2014年05期
9 任慧君;許濤;李響;;利用車載GPS軌跡數(shù)據(jù)實現(xiàn)公交車駕駛安全性分析[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2014年06期
10 金會慶;張樹林;趙艷林;姜良維;黃惠民;張國楚;路小波;;職業(yè)駕駛?cè)瞬涣捡{駛行為特征及其影響因素分析[J];人類工效學(xué);2013年04期
相關(guān)博士學(xué)位論文 前3條
1 曲婷;基于隨機模型預(yù)測控制的駕駛員行為建模[D];吉林大學(xué);2015年
2 咸化彩;次任務(wù)駕駛安全性評價指標(biāo)及評價模型研究[D];吉林大學(xué);2014年
3 秦洪懋;基于駕駛行為的車道偏離預(yù)警系統(tǒng)關(guān)鍵技術(shù)研究[D];江蘇大學(xué);2014年
相關(guān)碩士學(xué)位論文 前9條
1 張曉林;基于視覺的疲勞駕駛特征提取[D];蘭州大學(xué);2016年
2 翟海朋;營運車輛駕駛員駕駛行為與駕駛適宜性檢測單項指標(biāo)相關(guān)性研究[D];長安大學(xué);2015年
3 盧凱旋;基于車載信息融合的駕駛行為分析[D];哈爾濱工業(yè)大學(xué);2014年
4 李濤;營運車輛駕駛?cè)诉m宜性檢測綜合指標(biāo)與交通事故相關(guān)性研究[D];長安大學(xué);2014年
5 伍小敏;營運車輛駕駛?cè)诉m宜性檢測單項指標(biāo)與交通事故相關(guān)性研究[D];長安大學(xué);2013年
6 應(yīng)江婷;我國營運車輛駕駛?cè)诉m宜性檢測評價指標(biāo)體系的研究[D];長安大學(xué);2012年
7 李山虎;攻擊性駕駛行為評價方法研究[D];長安大學(xué);2011年
8 李新偉;營運車輛駕駛?cè)笋{駛適宜性檢測評價指標(biāo)的研究[D];長安大學(xué);2011年
9 歐穎;駕駛員心理健康及其相關(guān)因素的分析[D];重慶醫(yī)科大學(xué);2010年
,本文編號:2410013
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2410013.html