運(yùn)動(dòng)模糊車(chē)牌識(shí)別關(guān)鍵技術(shù)研究
[Abstract]:At present, license plate recognition system has been widely used in the areas of highway toll management, urban traffic intersection vehicle violation monitoring, parking lot management and so on. It has become an important part of intelligent transportation system. In this paper, the key technologies such as restoration, location, tilt correction, character segmentation and character recognition are studied for the blurred vehicle images caused by relative motion. Based on the analysis of recent studies at home and abroad, the related algorithms are improved. Firstly, based on the analysis of the existing motion blur image restoration algorithms, a comprehensive restoration algorithm based on point diffusion function estimation and coupled gradient fidelity adaptive total variational algorithm is proposed. Firstly, the motion blur direction and length are estimated by the horizontal projection of Radon transform and wavelet reconstruction, and then the adaptive total variation algorithm based on coupled gradient fidelity term is used for restoration. Experimental results show that the proposed algorithm can accurately estimate motion blur parameters and achieve better restoration effect. In the stage of license plate location, the accuracy of the traditional location algorithm will be affected because of the difference between the clarity of the vehicle image and the original image after the motion blur restoration. In this paper, a synthesis algorithm is proposed, which firstly uses chaotic adaptive genetic algorithm for rough location of license plate, and then uses projection method for accurate location of license plate. The experimental results show that the algorithm still has better localization results when the definition of vehicle images is poor. In the tilting correction stage, the vertical tilt has more influence on the next step character segmentation, so the horizontal tilt correction adopts the Radon transform method, and the vertical tilt correction adopts the rotation projection method with high precision. Experimental results show that the algorithm has high accuracy and high speed. In the phase of character segmentation, the projection method is used to segment the characters, and the improved connected region growth method is used to segment the rectangular region which can not be processed by rough segmentation, which greatly improves the accuracy of the segmentation. In the stage of character recognition, a LS-SVM character recognition algorithm based on wavelet kernel function is adopted, and the feature extraction and classifier design are analyzed. Finally, the performance of the algorithm and the traditional character recognition algorithm are compared by experiments.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 駱雪超,劉桂雄,馮云慶,申柏華;一種基于車(chē)牌特征信息的車(chē)牌識(shí)別方法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
2 ;沈陽(yáng)聚德高清車(chē)牌識(shí)別一體機(jī)跨出國(guó)門(mén)[J];中國(guó)交通信息化;2011年02期
3 何鐵軍;張寧;黃衛(wèi);;車(chē)牌識(shí)別算法的研究與實(shí)現(xiàn)[J];公路交通科技;2006年08期
4 王飛;李定主;;在車(chē)牌識(shí)別項(xiàng)目中對(duì)閾值選定法的一點(diǎn)改進(jìn)[J];機(jī)械工程與自動(dòng)化;2007年04期
5 馮新宇;龐艷輝;;車(chē)牌識(shí)別技術(shù)實(shí)現(xiàn)方法初探[J];交通科技與經(jīng)濟(jì);2007年02期
6 鄭婕;張曙;;圖像處理在車(chē)牌識(shí)別中的應(yīng)用[J];硅谷;2012年05期
7 孟諾;;交通卡口雷達(dá)、視頻、線圈檢測(cè)及測(cè)速和車(chē)牌識(shí)別原理[J];智能建筑與城市信息;2012年04期
8 常學(xué)義;馮濤;;一種基于特征點(diǎn)的車(chē)牌識(shí)別改進(jìn)算法[J];上海第二工業(yè)大學(xué)學(xué)報(bào);2014年01期
9 敖銀輝;神經(jīng)和模糊技術(shù)在車(chē)牌識(shí)別中的應(yīng)用[J];廣東工業(yè)大學(xué)學(xué)報(bào);2003年04期
10 蔡波,朱玉玉;車(chē)牌識(shí)別中的快速區(qū)域定位方法研究[J];西南科技大學(xué)學(xué)報(bào);2004年02期
相關(guān)會(huì)議論文 前3條
1 周漢青;;一種高速的車(chē)牌識(shí)別算法[A];第二十七屆中國(guó)(天津)2013IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會(huì)議論文集[C];2013年
2 史東娜;王樅;李衛(wèi);;車(chē)牌識(shí)別領(lǐng)域的中文術(shù)語(yǔ)自動(dòng)抽取[A];中國(guó)電子學(xué)會(huì)第十五屆信息論學(xué)術(shù)年會(huì)暨第一屆全國(guó)網(wǎng)絡(luò)編碼學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年
3 關(guān)東;汪永山;;基于車(chē)牌識(shí)別比對(duì)的自動(dòng)道閘控制系統(tǒng)[A];全國(guó)冶金自動(dòng)化信息網(wǎng)2012年年會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)評(píng)論員 周飆;交通擁堵是個(gè)產(chǎn)權(quán)問(wèn)題[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2010年
2 樊哲高;沈陽(yáng)聚德:智能視覺(jué)“千里眼”[N];中國(guó)電子報(bào);2008年
相關(guān)博士學(xué)位論文 前1條
1 任俊;基于支撐矢量機(jī)的圖像分類(lèi)、車(chē)牌識(shí)別及嵌入式應(yīng)用研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 馮凌穎;基于車(chē)牌識(shí)別的園區(qū)道閘車(chē)輛管理系統(tǒng)軟件設(shè)計(jì)[D];浙江大學(xué);2015年
2 郭真真;基于分階的BP和CNN車(chē)牌識(shí)別[D];昆明理工大學(xué);2015年
3 謝劍邦;基于車(chē)牌識(shí)別的停車(chē)場(chǎng)管理系統(tǒng)的研究[D];華中師范大學(xué);2015年
4 王云;電子不停車(chē)收費(fèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];上海交通大學(xué);2015年
5 唐貴鑫;基于支持向量機(jī)(SVM)的車(chē)牌識(shí)別算法研究[D];黑龍江大學(xué);2015年
6 韋杰;基于嵌入式平臺(tái)的交通視頻監(jiān)控算法的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
7 薛梅;嵌入式車(chē)牌識(shí)別系統(tǒng)優(yōu)化方法研究[D];西安電子科技大學(xué);2014年
8 張翔;復(fù)雜交通場(chǎng)景的圖像增強(qiáng)及其在車(chē)牌識(shí)別中的應(yīng)用[D];西安電子科技大學(xué);2014年
9 馬軒;車(chē)牌識(shí)別關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2014年
10 李艷;車(chē)牌識(shí)別關(guān)鍵技術(shù)研究[D];石家莊鐵道大學(xué);2015年
,本文編號(hào):2402988
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2402988.html