盾構(gòu)刀盤驅(qū)動(dòng)液壓系統(tǒng)故障診斷研究
[Abstract]:Shield machine is in a bad environment for a long time, the work characteristics of random load and strong impact make its hydraulic system become a high fault location. Once failure occurs, if it can not be eliminated in time and effectively, it will seriously affect the progress of construction, cause irreparable economic losses, and even cause serious casualties. At present, the fault diagnosis of shield machine hydraulic system is mostly through single sensor detection and manual judgment, which leads to low diagnosis efficiency and low diagnostic accuracy. In view of this, an improved fault diagnosis method combining PCA and SVM is put forward, which takes the hydraulic system driven by the cutter head as the research object, takes the theoretical research, the simulation modeling and the experimental analysis as the research means, in order to reduce the dependence on the maintainers. The automatic and intelligent hydraulic system of shield machine is realized. The main works are as follows: (1) through the analysis of the principle of the hydraulic system driven by the cutter head, the mechanism and characteristics of its common faults are summarized, and the mathematical model of its key components is established. The relationship between the model parameters and the fault characteristics is found, which provides a theoretical basis for fault simulation. (2) the AMESim simulation model of the hydraulic system driven by the cutter head is established. According to the actual hydraulic components and systems, the simulation model is set up in detail. At the same time, the corresponding data are collected to provide the sample data for fault diagnosis research. (3) the fault detection of the simulated sample data of the simulation model is carried out by improved PCA. The dimension of the feature parameters is reduced, the redundant information is removed, and the correlation between the features is removed. Then the principal component score vector extracted by principal component analysis (PCA) is used as the input sample set of SVM. Finally, SVM classifier is used to classify the fault type. (4) the test results show that the fault diagnosis method proposed in this paper is feasible, and the diagnostic accuracy can reach more than 95%. It has good engineering application value.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U455.39
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;國(guó)家發(fā)改委批復(fù)的全國(guó)城市地鐵里程排名(截至2016年底)[J];隧道建設(shè);2017年01期
2 ;高端裝備步入發(fā)展黃金期“十三五”或?qū)崿F(xiàn)產(chǎn)業(yè)化[J];電源世界;2016年04期
3 ;軌道交通裝備入選十三五規(guī)劃建議[J];電源世界;2016年01期
4 袁憲鋒;宋沐民;周風(fēng)余;陳竹敏;;多PCA模型及SVM-DS融合決策的服務(wù)機(jī)器人故障診斷[J];振動(dòng).測(cè)試與診斷;2015年03期
5 王超;張立超;彭晴晴;;面向產(chǎn)業(yè)安全的中國(guó)隧道掘進(jìn)機(jī)產(chǎn)業(yè)前景展望[J];中國(guó)軟科學(xué);2014年10期
6 王夢(mèng)恕;;中國(guó)盾構(gòu)和掘進(jìn)機(jī)隧道技術(shù)現(xiàn)狀、存在的問題及發(fā)展思路[J];隧道建設(shè);2014年03期
7 黃克;周奇才;趙炯;熊肖磊;陳罡;;基于OSA-CBM的盾構(gòu)液壓系統(tǒng)故障診斷方法研究[J];機(jī)械科學(xué)與技術(shù);2013年08期
8 于達(dá);王學(xué)慧;;基于動(dòng)態(tài)PCA及GMM的挖掘機(jī)液壓系統(tǒng)故障檢測(cè)方法研究[J];機(jī)械制造與自動(dòng)化;2013年03期
9 何穎瑤;;淺談我國(guó)盾構(gòu)機(jī)的發(fā)展[J];科技致富向?qū)?2013年15期
10 黃克;周奇才;趙炯;熊肖磊;;盾構(gòu)液壓系統(tǒng)狀態(tài)預(yù)測(cè)[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2013年08期
相關(guān)會(huì)議論文 前1條
1 錢七虎;陳志龍;;21世紀(jì)地下空間開發(fā)利用展望[A];中國(guó)土木工程學(xué)會(huì)第八屆年會(huì)論文集[C];1998年
相關(guān)碩士學(xué)位論文 前10條
1 張建毅;盾構(gòu)施工引起地層變形的機(jī)理與數(shù)值模擬研究[D];中國(guó)礦業(yè)大學(xué);2015年
2 李詩(shī)詩(shī);城軌大直徑盾構(gòu)機(jī)組裝新技術(shù)研究[D];華南理工大學(xué);2014年
3 徐康;后裝壓縮式垃圾車液壓系統(tǒng)故障機(jī)理及智能診斷系統(tǒng)研究[D];中南大學(xué);2014年
4 張洪瑾;基于模糊神經(jīng)網(wǎng)絡(luò)的掘進(jìn)機(jī)液壓系統(tǒng)故障診斷研究[D];南京理工大學(xué);2013年
5 李佳寧;基于多元統(tǒng)計(jì)化工過(guò)程故障診斷方法研究[D];東北大學(xué);2013年
6 張魏友;EPB盾構(gòu)刀盤結(jié)構(gòu)及其液壓驅(qū)動(dòng)系統(tǒng)的研究[D];南京理工大學(xué);2013年
7 楊潔;基于PCA的間歇過(guò)程監(jiān)測(cè)及故障診斷方法研究[D];東北大學(xué);2010年
8 滕韜;盾構(gòu)刀盤回轉(zhuǎn)驅(qū)動(dòng)液壓系統(tǒng)建模與仿真研究[D];中南大學(xué);2010年
9 劉中興;基于神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的挖掘機(jī)回轉(zhuǎn)裝置液壓馬達(dá)的故障診斷[D];貴州大學(xué);2009年
10 李艷英;基于支持向量機(jī)參數(shù)優(yōu)化的群智能優(yōu)化算法研究[D];天津大學(xué);2007年
,本文編號(hào):2397834
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2397834.html