公交車輛到站時(shí)間預(yù)測方法研究
[Abstract]:The arrival time of public transport vehicles is one of the important embodiment of bus intelligence. Improving the precision of bus arrival time prediction can improve the level of public transport services, ease traffic congestion, and reduce passenger travel costs. Realizing the informationization of public transportation system has an important role to promote. Firstly, the paper analyzes the principle, method and characteristics of bus operation data collection, and designs GPS data interpolation algorithm and bus line discretization algorithm to deal with bus operation data. Based on the analysis of the factors affecting the running process and arrival time of public transport vehicles, the station stop time and the average driving speed of the interval are taken as input variables, and the algorithm to obtain the input variables is designed. Secondly, the paper takes the stop time and the average speed of the interval as input variables, and establishes the arrival time prediction model based on interval length (Statistical Method Bus Arrival Time Prediction Model Based on Interval Length,SMBATP-IL). Based on interval length Kalman filter arrival time prediction model (Kalman.Filter Bus Arrival Time Prediction Model Based on Interval Length,KFBATP-IL) and particle filter arrival time prediction model based on interval length (Particle Filter Bus Arrival Time Prediction Model Based on Interval Length,PFBATP-IL). The specific flow and steps of the algorithm are designed. The PFBATP-IL model is taken as an example to prove the feasibility of the proposed prediction method and model. Finally, two bus routes in Beijing are selected for empirical analysis. The average absolute error (MAE) is taken as the index to measure the predicted results. The three times of early peak (8:00), Pingfeng (11:00) and late peak (17:00) are selected. Under the conditions of different interval length (10m ~ 20m ~ 30m), the arrival time is predicted by using the model established in this paper. The results show that different interval lengths have the least influence on PFBATP-IL model, followed by KFBATP-IL model, and have the greatest influence on the prediction results of SMBATP-IL model. Under the condition of optimal interval length, the prediction results of PFBATP-IL model are optimal, which are improved by 16.86% and 28.46%, respectively, compared with those of KFBATP-IL model and SMBATP-IL model.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491.17
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任遠(yuǎn);呂永波;馬繼輝;陳鑫杰;余明捷;;基于粒子濾波的公交車輛到站時(shí)間預(yù)測研究[J];交通運(yùn)輸系統(tǒng)工程與信息;2016年06期
2 汪磊;左忠義;;基于MLR的公交車行程時(shí)間預(yù)測模型[J];大連交通大學(xué)學(xué)報(bào);2015年02期
3 胡繼華;李國源;程智鋒;;基于馬爾科夫鏈的公交站間行程時(shí)間預(yù)測算法[J];交通信息與安全;2014年02期
4 周敏;韓印;姚佼;;基于廣義回歸神經(jīng)網(wǎng)絡(luò)的公交車運(yùn)行時(shí)間預(yù)測模型[J];交通與運(yùn)輸(學(xué)術(shù)版);2013年02期
5 陳旭梅;龔輝波;王景楠;;基于SVM和Kalman濾波的BRT行程時(shí)間預(yù)測模型研究[J];交通運(yùn)輸系統(tǒng)工程與信息;2012年04期
6 楊小瑩;彭剛;王濤;王艷琴;;基于量子遺傳粒子濾波的WSN目標(biāo)跟蹤算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年23期
7 于濱;蔣永雷;于博;楊忠振;;支持向量機(jī)在公交車輛運(yùn)行時(shí)間預(yù)測中的應(yīng)用[J];大連海事大學(xué)學(xué)報(bào);2008年04期
8 于濱;楊忠振;曾慶成;;基于SVM和Kalman濾波的公交車到站時(shí)間預(yù)測模型[J];中國公路學(xué)報(bào);2008年02期
9 于濱;楊忠振;林劍藝;;應(yīng)用支持向量機(jī)預(yù)測公交車運(yùn)行時(shí)間[J];系統(tǒng)工程理論與實(shí)踐;2007年04期
10 朱志宇,姜長生,張冰;多傳感器多機(jī)動目標(biāo)跟蹤方法研究進(jìn)展[J];現(xiàn)代防御技術(shù);2005年05期
相關(guān)碩士學(xué)位論文 前7條
1 劉翔;衛(wèi)星姿態(tài)控制系統(tǒng)故障模式分析與故障診斷研究[D];哈爾濱工業(yè)大學(xué);2015年
2 謝玲;公交到站時(shí)間預(yù)測及換乘機(jī)制的研究[D];蘇州大學(xué);2014年
3 王麗杰;基于GPS的智能公交車輛到站時(shí)間預(yù)測方法研究與系統(tǒng)實(shí)現(xiàn)[D];東北大學(xué);2012年
4 ;;公交車輛到站時(shí)間預(yù)測研究[D];北京交通大學(xué);2010年
5 朱麗穎;公交車輛行程時(shí)間預(yù)測方法研究[D];北京交通大學(xué);2010年
6 李福雙;智能公交車輛到站時(shí)間預(yù)測研究[D];北京交通大學(xué);2009年
7 楊先平;城市道路行程時(shí)間預(yù)測方法研究[D];吉林大學(xué);2005年
,本文編號:2383279
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2383279.html