基于本體和描述邏輯的交通事件語(yǔ)義表現(xiàn)方法研究
[Abstract]:Semantic identification and representation of traffic events based on ontology and description logic is a research hotspot in the field of intelligent transportation. It can provide effective, complete and accurate real-time traffic state information for urban traffic management and control, and reduce traffic pressure. It is of guiding significance to reduce traffic accidents, improve traffic efficiency and intelligent level of urban traffic. However, the existing computer image semantic analysis technology can not automatically identify the high-level semantics of traffic events expressed by traffic video image sequence. The main reasons are as follows: first, the lack of object conceptual hierarchy recognition method; Second, there is a semantic gap problem when the low-level image vision concept is mapped to the event high-level semantics. This makes the traditional traffic scene event understanding methods mostly ignore the semantic analysis and only analyze the pure image data. Therefore, the study of high-level semantic recognition, representation and reasoning of road traffic events is an important research topic. This paper derives from the research results of the project "Road Safety reasoning Research based on Traffic situation Assessment", which is funded by the provincial fund. It is divided into three parts: the research of object recognition method at conceptual level, The method of mapping low-level concepts to high-level semantics, and the identification, representation and reasoning system development of traffic event high-level semantics. The main contributions of this paper are as follows: (1) using the improved "LST-KDE" algorithm, the Camshift algorithm based on HSI color space and Hough transform to extract the feature attributes (color, texture, etc.); Then, using domain ontology theory as reference, the hierarchical conceptual model of traffic images is constructed, and the objects with certain attributes in traffic scene images are mapped to basic concepts. Finally, the automatic construction method of traffic domain ontology is given, the knowledge base of traffic domain ontology is established, and the concept hierarchy recognition of objects in traffic scene events is realized. It provides the conceptual basis for the following semantic reasoning. (2) in order to solve the problem of "semantic divide", descriptive logic is used as the basis of logic expression and reasoning. The description logic expression based on predicate logic and Tableau algorithm is used to build the bridge between the low-level concept and the high-level semantics, and a representation method is proposed to describe the high-level semantics by using the low-level concept. Among them, descriptive logical role set is the key to mapping concept to semantic and semantic reasoning. In this paper, RCC8 spatial topology and conical spatial orientation model are introduced to describe the spatial topology and directional relationship between scene objects, which is regarded as the main component of the role set of description logic. (3) Traffic event semantic recognition is proposed. The reasoning and representation system includes three modules: attribute fusion, semantic mapping, event recognition and representation. Firstly, the complete traffic events are divided into several sub-events by using the best sample image sequence, and the sample image sequence database of the sub-event is constructed. Then, FSM automata and description logic RQL query language are used to automatically infer and recognize each sub-event, and finally complete traffic event semantic identification and representation are realized. The characteristics and innovation of this study are as follows: a structured semantic representation system is constructed using formal natural languages such as ontology and description logic which can be recognized and processed by computer. The semantic analysis of traffic scene image is carried out by simulating human brain thinking, and the whole process of traffic event situation evolution in the scene is recognized and inferred, so that the traffic scene can be understood. Traffic image retrieval and semantic identification and representation of traffic events provide new ideas and methods.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陸建江;李言輝;張亞非;周波;康達(dá)周;;限制數(shù)量約束的擴(kuò)展模糊描述邏輯的推理復(fù)雜性(英文)[J];Journal of Southeast University;2007年02期
2 王靜;張健沛;楊靜;程麗麗;;面向矛盾問(wèn)題的動(dòng)態(tài)描述邏輯擴(kuò)展研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2009年07期
3 張燕;;描述邏輯研究進(jìn)展[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
4 王生生;劉大有;吳瑕;謝琦;郭昊;;模糊空間描述邏輯及應(yīng)用[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2010年06期
5 周鑫;張建軍;;基于描述邏輯的語(yǔ)義Web本體研究[J];科學(xué)技術(shù)與工程;2007年03期
6 胡鶴;杜小勇;;一種基于區(qū)間模糊理論的描述邏輯系統(tǒng)[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期
7 曹茂俊;尚福華;滕雪萍;;基于描述邏輯的可擴(kuò)展的案例表示及檢索研究[J];科學(xué)技術(shù)與工程;2010年11期
8 曹凱;于少偉;;基于案例及描述邏輯的道路交通微觀態(tài)勢(shì)推理模型[J];中國(guó)安全科學(xué)學(xué)報(bào);2014年01期
9 王蓁蓁;;樸素模糊描述邏輯知識(shí)庫(kù)構(gòu)造及其樸素推理[J];應(yīng)用科技;2012年06期
10 郝斐;董慶超;曾廣軍;;一種基于描述邏輯的UML模型驗(yàn)證方法[J];計(jì)算機(jī)與數(shù)字工程;2011年11期
相關(guān)會(huì)議論文 前6條
1 文斌;甘健侯;夏幼明;徐天任;;基于ALC的擴(kuò)展描述邏輯ALC~+[A];邏輯學(xué)及其應(yīng)用研究——第四屆全國(guó)邏輯系統(tǒng)、智能科學(xué)與信息科學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
2 曹發(fā)生;;描述邏輯系統(tǒng)UEVN中概念的包含算法[A];“回顧與前瞻:中國(guó)邏輯史研究30年”全國(guó)學(xué)術(shù)研討會(huì)論文集[C];2010年
3 文斌;甘健侯;夏幼明;徐天偉;;框架表示法到擴(kuò)展描述邏輯ALC+的轉(zhuǎn)換初探[A];2008通信理論與技術(shù)新進(jìn)展——第十三屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集(上)[C];2008年
4 吳凌坤;湯庸;湯娜;;一種基于時(shí)態(tài)描述邏輯的工資智能決策支持系統(tǒng)的實(shí)現(xiàn)[A];第二十三屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2006年
5 康達(dá)周;徐寶文;陸建江;李言輝;;支持語(yǔ)義web模糊本體的描述邏輯(英文)[A];全國(guó)語(yǔ)域web與本體能研討會(huì)論文集[C];2006年
6 李敏靜;郭佳宏;;基于描述邏輯的概念表示[A];2012·學(xué)術(shù)前沿論叢——科學(xué)發(fā)展:深化改革與改善民生(上)[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 中國(guó)科學(xué)院計(jì)算技術(shù)研究所 常亮邋史忠植;語(yǔ)義Web的邏輯基礎(chǔ)[N];計(jì)算機(jī)世界;2007年
相關(guān)博士學(xué)位論文 前10條
1 王靜;基于可拓集的描述邏輯研究[D];哈爾濱工程大學(xué);2009年
2 鄒婷婷;描述邏輯中若干問(wèn)題的研究[D];吉林大學(xué);2013年
3 張小旺;超協(xié)調(diào)描述邏輯[D];北京大學(xué);2011年
4 紀(jì)祥;二維描述邏輯的元建模及其應(yīng)用[D];吉林大學(xué);2013年
5 孫小林;2-型模糊描述邏輯及其在本體進(jìn)化中的應(yīng)用研究[D];華中科技大學(xué);2007年
6 沈國(guó)華;基于描述邏輯的語(yǔ)義Web服務(wù)建模及推理研究[D];南京航空航天大學(xué);2009年
7 古華茂;描述邏輯概念可滿足性推理研究[D];浙江大學(xué);2009年
8 方流;描述邏輯推理優(yōu)化技術(shù)研究[D];浙江大學(xué);2008年
9 王海龍;支持模糊數(shù)據(jù)類型表示的模糊描述邏輯研究[D];東北大學(xué);2009年
10 唐素勤;面向語(yǔ)義Web的描述邏輯本體構(gòu)建[D];中南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 張娜;基于DL-Lite的動(dòng)態(tài)描述邏輯研究[D];桂林電子科技大學(xué);2015年
2 李瑩;基于描述邏輯的教育突發(fā)事件語(yǔ)義描述及知識(shí)推理方法研究[D];云南師范大學(xué);2015年
3 于云;基于本體和描述邏輯的交通事件語(yǔ)義表現(xiàn)方法研究[D];山東理工大學(xué);2015年
4 唐英英;基于擴(kuò)展描述邏輯的事件實(shí)例推理研究[D];上海大學(xué);2014年
5 文斌;基于描述邏輯的語(yǔ)義Web知識(shí)推理研究[D];云南師范大學(xué);2005年
6 甘曉麗;基于描述邏輯的概念建模研究[D];廣西師范大學(xué);2006年
7 領(lǐng)吉;描述邏輯與規(guī)則整合研究[D];吉林大學(xué);2010年
8 李國(guó)媛;模糊描述邏輯擴(kuò)展模糊軟集的研究[D];東北師范大學(xué);2012年
9 張瑞霞;基于描述邏輯的定性空間推理研究[D];重慶大學(xué);2010年
10 袁佳樂(lè);描述邏輯歸結(jié)推理的研究[D];華東交通大學(xué);2009年
,本文編號(hào):2382741
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2382741.html