基于交通流數(shù)據(jù)的城市交通擁堵檢測方案研究
[Abstract]:At present, the problem of urban traffic congestion has become one of the problems hindering the development of world economy and the construction of urban modernization. Because of the rapid economic development in China, urban construction and road network construction can not keep up with the pace of national development, resulting in social problems, environmental problems are particularly serious. Real-time and fast detection of urban traffic congestion has become a major means to solve the problem of urban traffic congestion. In order to detect the occurrence of urban traffic congestion and provide the basis for urban traffic processing system, it is convenient to solve the traffic congestion problem in time by collecting traffic data in real time and constructing a traffic congestion detection model. In recent years, the research on urban traffic congestion detection schemes has developed rapidly. Relying on modern and advanced traffic detection and monitoring equipment, it can quickly collect relevant traffic data. Various feature extraction algorithms are used to extract traffic congestion features such as vehicle speed change, so as to design a variety of congestion detection schemes, but in the face of more and more traffic raw data and inefficient data collection means, Only relying on the vehicle speed and other few traffic data features can not get a timely and accurate traffic congestion detection results. In order to detect urban traffic congestion more timely and accurately, this paper proposes a traffic congestion detection scheme based on traffic flow data. By classifying the traffic flow data, extracting the multi-dimensional congestion characteristics, constructing a three-layer congestion detection model, adopting the trigger congestion detection process, reducing the time consumption of the detection process, and estimating the congestion degree. More accurate detection of traffic jams. At the same time, this paper also introduces another rapid development of urban traffic congestion detection technology-VANET (vehicle Ad Hoc Network), through the research of this technology to explore the future direction of solving urban traffic congestion problem. Finally, the performance of two traffic congestion detection schemes is evaluated by simulation experiments, and the future research direction of urban traffic congestion detection is described.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭淑鑒;楊敬鋒;;國內(nèi)外交通擁堵評價(jià)指標(biāo)計(jì)算方法研究[J];公路與汽運(yùn);2014年01期
2 鄭長江;路源;;基于支持向量機(jī)的城市道路交通擁堵判別算法研究[J];貴州大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
3 佘永業(yè);趙力萱;羅東華;李熙瑩;余志;;一種交通擁堵自動檢測方法[J];計(jì)算機(jī)與現(xiàn)代化;2013年11期
4 胡啟洲;劉英舜;郭唐儀;;城市交通擁堵態(tài)勢監(jiān)控的時(shí)空分布形態(tài)識別模型[J];交通運(yùn)輸系統(tǒng)工程與信息;2012年03期
5 孫健;劉瓊;彭仲仁;;城市交通擁擠成因及時(shí)空演化規(guī)律分析——以深圳市為例[J];交通運(yùn)輸系統(tǒng)工程與信息;2011年05期
6 陳陽舟;田秋芳;張利國;;基于神經(jīng)網(wǎng)絡(luò)的城市快速路交通擁堵判別算法[J];計(jì)算機(jī)測量與控制;2011年01期
7 楊兆升;張茂雷;;基于模糊綜合評判的道路交通狀態(tài)分析模型[J];公路交通科技;2010年09期
8 楊祖元;黃席樾;杜長海;唐明霞;;基于FFCM聚類的城市交通擁堵判別研究[J];計(jì)算機(jī)應(yīng)用研究;2008年09期
9 郝媛;徐天東;孫立軍;;城市快速路常發(fā)性交通擁擠分析[J];交通與計(jì)算機(jī);2007年02期
10 俎振山;韓鳳春;;交通監(jiān)控系統(tǒng)信息采集問題及應(yīng)對方法研究[J];中國人民公安大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
相關(guān)會議論文 前3條
1 林群;關(guān)志超;楊東援;;深圳城市道路交通狀態(tài)判別技術(shù)應(yīng)用研究[A];第二屆中國智能交通年會論文集[C];2006年
2 全永q,
本文編號:2377752
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2377752.html