神華煤直接液化殘渣的萃取組分及模型化合物改性石油瀝青
[Abstract]:With the increasing traffic volume, the requirements of asphalt pavement are becoming higher and higher. Because of the excellent performance of modified asphalt, it is widely used in the world. Direct coal liquefaction residue (DCLR) is a by-product of coal liquefaction process. It is similar to Trinidad Lake bitumen (TLA) in material composition and properties. The quantity of modified bitumen is smaller than that of TLA.. Using DCLR as asphalt modifier can not only make full use of liquefied residue, but also solve the environmental problems caused by it. In this paper, (HS), asphaltene (A), pre-asphaltene (PA) was prepared by step extraction of DCLR, and the performance of modified asphaltene was detected by adding three modifiers to petroleum asphalt. It is concluded that when the amount of HS is 4, the performance of modified asphalt conforms to the standard of ASTM D5710-95 40-55 of the United States. When PA is added, the three indexes of modified asphalt can not meet the standard at the same time. In addition, the model compounds of n-dodecane, n-eicosane, naphthalene and pyrene were selected as asphalt modifiers. The properties of modified asphalt were increased with the increase of modifier, and the ductility decreased first and then increased. Some properties of DCLR and modified asphalt were determined by thermogravimetric analysis (TG), TG-FTIR,FTIR) and fluorescence microscope. The trend of thermogravimetric loss and weight loss rate curve of seven modified asphalt and petroleum asphalt is the same, and the weight loss rate of modified asphalt is smaller than that of petroleum asphalt, but the difference is not significant. In the infrared spectra of all bitumen pyrolytic gases, there are absorption peaks in 3500-4000cm-1, which proves that H2O is produced in pyrolytic gases, and methane vibrates at 3015 cm-1. 2290-2400cm-1 is the vibrational absorption peak of CO2, the peak strength of CO2 and the modified asphalt are higher than that of petroleum asphalt, and the peak of 1374 cm-1 is the vibrational absorption peak of CO2, indicating that there is SO2; in the gas. 650-900 cm-1 is the absorption vibrational peak of benzene ring substituents. The pyrolysis products of bitumen are mainly aromatic hydrocarbons, alcohols and phenols. After pyrolysis of modified asphalt with n-dodecane and n-eicosane, 2290-2400cm-1 indicates that the peak strength of CO2 is higher than that of naphthalene and pyrene modified asphalt. These seven kinds of modified bitumen have more fluorescent substances than petroleum asphalt. After adding modifier, the aromaticity of partial oil in asphalt increases, which leads to the increase of fluorescence. After asphalt aging, the luminescent substances of modified asphalt extracted by DCLR are still in the form of dots. The modified asphalt of the model compound is shown as a short rod structure. In this paper, there are no new functional groups in the modified asphalt by infrared detection. It is speculated that the modifier and petroleum asphalt are only mixed physically and there is no chemical reaction.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U414
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 季節(jié);索智;石越峰;李鵬飛;趙永尚;;煤直接液化殘渣與瀝青共混后的性能試驗研究[J];公路交通科技;2016年05期
2 周燕;吉鵬飛;張凱;郭紅梅;;瀝青熱老化紅外光譜分析[J];天津城建大學(xué)學(xué)報;2016年02期
3 楊燕紅;劉媛媛;孫鳴;宋真真;趙香龍;馬曉迅;;煤瀝青與石油瀝青共混改性及其熱解特性[J];化工進(jìn)展;2016年02期
4 季節(jié);石越峰;索智;徐世法;許鷹;;DCLR與TLA改性瀝青膠漿的流變性能對比[J];沈陽建筑大學(xué)學(xué)報(自然科學(xué)版);2015年06期
5 陳靜;孫鳴;代曉敏;姚一;劉媛媛;賀敏;呂波;趙香龍;馬曉迅;;基于苯甲醛交聯(lián)劑的煤直接液化殘渣改性石油瀝青[J];燃料化學(xué)學(xué)報;2015年09期
6 季節(jié);石越峰;索智;徐世法;李鵬飛;;煤直接液化殘渣共混改性瀝青的性能和微觀結(jié)構(gòu)[J];北京工業(yè)大學(xué)學(xué)報;2015年07期
7 孔勁媛;熊國躍;劉挺嵩;;我國瀝青市場主要供應(yīng)商及競爭格局分析[J];當(dāng)代石油石化;2014年08期
8 張東興;趙威為;章照宏;朱自強(qiáng);肖嘉瑩;;改性瀝青中SBS改性劑摻量的熱重分析[J];公路工程;2014年04期
9 喬望;;《國家公路網(wǎng)規(guī)劃(2013年-2030年)》發(fā)布[J];交通世界(建養(yǎng).機(jī)械);2013年07期
10 姜麗偉;;特立尼達(dá)湖改性瀝青路用性能試驗研究[J];四川建筑科學(xué)研究;2013年01期
相關(guān)博士學(xué)位論文 前5條
1 向麗;廢橡膠粉/SBS復(fù)合改性瀝青的機(jī)理和性能研究[D];中國石油大學(xué)(華東);2011年
2 劉漢湖;巖礦波譜數(shù)據(jù)分析與信息提取方法研究[D];成都理工大學(xué);2008年
3 程昱川;幾類層狀超薄膜結(jié)構(gòu)的分子光譜研究[D];吉林大學(xué);2006年
4 景彥平;瀝青結(jié)構(gòu)及高聚物改性瀝青機(jī)理研究[D];長安大學(xué);2006年
5 王仕峰;苯乙烯—丁二烯共聚彈性體改性瀝青的研究[D];華南理工大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 劉媛媛;基于醛類交聯(lián)劑的煤焦油瀝青改性石油瀝青[D];西北大學(xué);2016年
2 陳靜;基于醛類交聯(lián)劑的煤直接液化殘渣改性石油瀝青[D];西北大學(xué);2015年
3 趙永尚;煤直接液化殘渣改性瀝青及其膠漿的性能研究[D];北京建筑大學(xué);2015年
4 王華;道路瀝青性能的綜合分析與評價[D];長安大學(xué);2014年
5 李亮;新疆兵團(tuán)墾區(qū)公路瀝青路面瀝青再生劑應(yīng)用研究[D];新疆農(nóng)業(yè)大學(xué);2013年
6 向東;冷再生瀝青膠結(jié)料試驗方法及性能評價研究[D];重慶交通大學(xué);2013年
7 何亮;煤液化殘渣復(fù)合改性瀝青制備及其性能研究[D];長安大學(xué);2013年
8 方成志;環(huán)保芳烴樹脂在輪胎膠料中的應(yīng)用研究[D];華南理工大學(xué);2013年
9 薄強(qiáng)龍;超支化聚合物在煤液化殘渣復(fù)合防水材料中的應(yīng)用與研究[D];濟(jì)南大學(xué);2014年
10 溫永;有機(jī)蒙脫土—氫氧化物改性瀝青的制備及其阻燃性能研究[D];長安大學(xué);2012年
,本文編號:2331807
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2331807.html