基于多網(wǎng)融合的電動汽車有序充電管理系統(tǒng)的研究
[Abstract]:After the industrial revolution, human society continued to progress and the global economy developed rapidly. The use of fossil energy not only improved the living standards of human beings, but also brought serious environmental pollution and energy shortage problems. These problems are gradually becoming an important factor affecting the long-term survival of human beings. The emergence of electric vehicles provides a new solution to these problems, with strong support from governments around the world, but, Large-scale electric vehicles (EVs), which are connected to the power grid as electric load, bring great pressure and challenge to the safe and stable operation of the grid. In this paper, an ordered charging model for electric vehicles based on multi-information network is proposed. The model takes into account three factors: the network of electric vehicles, the smart grid and the Internet of things of charging equipment. Considering the historical behavior of charging users and the historical usage of charging equipment, the orderly charging of charging vehicles can be realized based on the load forecasting of power grid. At the same time, the model can ensure the safe and stable operation of the power grid side and the timely and convenient charging requirements of the charging users, and according to the analysis, the advantages and disadvantages of the charging equipment operation strategy are obtained. It provides the basis for the operators to adjust the operation plan and further optimize the regional orderly charging service. The orderly charging management system based on multi-network is implemented under the premise of data fusion of car network, smart grid and Internet of things. With the progress and development of the electric vehicle industry as a whole, the corresponding supporting network is also improving rapidly, so it produces massive, isomerization basic data, which are concentrated in the information systems of different service operators, so they can't melt each other. For the overall analysis of the three networks of data brings an insurmountable physical isolation. Therefore, this paper first constructs the Web Service data service interface based on REST (Representational State Transfer), and realizes the integration of the three-network data at the data layer level by using the REST portable and efficient data exchange scheme. Then, by using the integrated basic data, the behavior habits of charging users and the heat intensity of charging equipment are analyzed and processed, and the multi-network data is further fused in the feature layer and decision layer. An active peak-shaving orderly charging strategy initiated by the grid side is proposed. Finally, the system is implemented and deployed on the cloud service platform.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491.8;TP315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱鷹屏;張緒紅;韓新瑩;;用于配電網(wǎng)網(wǎng)損優(yōu)化的電動汽車智能充電調(diào)度[J];廣東電力;2016年09期
2 占愷嶠;胡澤春;宋永華;徐智威;賈龍;張洪財(cái);;考慮三相負(fù)荷平衡的電動汽車有序充電策略[J];電力系統(tǒng)自動化;2015年17期
3 劉卓然;陳健;林凱;趙英杰;許海平;;國內(nèi)外電動汽車發(fā)展現(xiàn)狀與趨勢[J];電力建設(shè);2015年07期
4 王岱;管曉宏;吳江;高君宇;;基于車輛行駛行為特性建模的電動汽車充放電策略與分析[J];電網(wǎng)技術(shù);2014年09期
5 王錫凡;邵成成;王秀麗;杜超;;電動汽車充電負(fù)荷與調(diào)度控制策略綜述[J];中國電機(jī)工程學(xué)報(bào);2013年01期
6 李秋碩;肖湘寧;郭靜;劉琳;;電動汽車有序充電方法研究[J];電網(wǎng)技術(shù);2012年12期
7 樊揚(yáng);左鄭敏;朱浩駿;喬嘉賡;;電動汽車充電模式對廣東電網(wǎng)負(fù)荷特性的影響[J];廣東電力;2011年12期
8 師慶民;趙迪斐;高楊;;21世紀(jì)中國能源發(fā)展趨勢展望[J];能源與節(jié)能;2011年08期
9 趙俊華;文福拴;楊愛民;辛建波;;電動汽車對電力系統(tǒng)的影響及其調(diào)度與控制問題[J];電力系統(tǒng)自動化;2011年14期
10 沈祥;朱傳柏;;基于多智能體的電力信息融合模型設(shè)計(jì)[J];中國電力;2010年12期
相關(guān)博士學(xué)位論文 前3條
1 宋墩文;基于多源信息融合的電網(wǎng)暫態(tài)穩(wěn)定風(fēng)險(xiǎn)評估[D];中國農(nóng)業(yè)大學(xué);2016年
2 韓曉娟;多源信息融合技術(shù)在火電廠熱力系統(tǒng)故障診斷中的應(yīng)用研究[D];華北電力大學(xué)(北京);2008年
3 竇春霞;基于信息融合的電力系統(tǒng)故障檢測及穩(wěn)定控制研究[D];燕山大學(xué);2005年
相關(guān)碩士學(xué)位論文 前5條
1 艾明浩;基于云計(jì)算平臺的電動汽車有序充電監(jiān)控系統(tǒng)研究[D];華北電力大學(xué);2015年
2 朱陶;融合路網(wǎng)信息和電網(wǎng)信息的大規(guī)模電動汽車充電調(diào)度[D];清華大學(xué);2014年
3 馬濱濱;論我國電動汽車的推廣策略[D];廈門大學(xué);2014年
4 黃健;數(shù)據(jù)融合技術(shù)在電網(wǎng)規(guī)劃中的應(yīng)用研究[D];天津大學(xué);2014年
5 張保梅;數(shù)據(jù)級與特征級上的數(shù)據(jù)融合方法研究[D];蘭州理工大學(xué);2005年
,本文編號:2323054
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2323054.html