夜郎湖大橋主拱構造及其力學行為研究
[Abstract]:The development of long-span arch bridge is closely related to the progress of construction technology. Arch bridge is mainly under compression. It is reasonable to apply concrete material with low tensile strength and high compressive strength to arch structure. However, with the increase of span, the construction difficulty increases significantly. Long span reinforced concrete arch bridges abroad are mostly constructed by cantilever pouring method or cantilever pouring and stiffening skeleton combination method. Compared with foreign countries, there is still a gap in construction experience and theory in our country. This paper relies on the technology key and demonstration of long-span concrete arch bridge combined with cantilever construction and rigid skeleton, which is a sub-project of Guizhou Provincial Transportation Department, "study on the structure and stress behavior of main Arch Ring with single Box and single Chamber". In view of the single box and single chamber section of the main arch ring of Youlang Lake Bridge in Guizhou, the following works are carried out: 1 based on the theory of elastic thin plate and the equivalent pressure bar theory of arch, The section form and structure of main arch ring in cantilever pouring and rigid skeleton combination construction are studied, and the calculation formula of plate thickness under the critical state of main arch ring strength failure, global instability and local buckling of arch ring is derived. According to the thickness to width ratio of arch ring (味 = t / b), the failure sequence of arch ring in three critical states can be determined. The results show that the section of a single box has a strong anti-roll ability, and reducing the number of the box room has a significant effect on the critical thickness of the arch ring roof and bottom plate, and setting the flange of the top and bottom plate can reduce the critical thickness of the local buckling state. The influence of the structure and length of rigid skeleton on the stiffness of the main arch ring is studied, and the equivalent stiffness of the section of the rigid skeleton of the main arch is derived by using the energy method. The results show that the equivalent stiffness distribution of the arch is the most smooth when the span of arch ring is about 1 / 2 of the stiffness skeleton length, and the stiffness effect of the composite section is analyzed by using the principle of equivalent stiffness. The results show that the stiffness skeleton structure has no obvious influence on the internal force, deformation, dynamic and stability performance of the main arch in the state of the bridge. 4 according to the stiffness skeleton structure adopted in the design, the stability analysis of the construction stage is carried out. The influence of temperature on construction process is studied.
【學位授予單位】:重慶交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U445.4
【相似文獻】
相關期刊論文 前10條
1 周泳濤,李毅謙,周軍生,周洲,黃峰;云南小灣大橋主拱鋼箱加工與制造[J];世界橋梁;2005年02期
2 黃獻祥;;肇慶大旺大橋主拱維修加固材料與施工技術[J];建材與裝飾(下旬刊);2007年09期
3 李天降;任敏;郭鵬飛;;超聲波在鋼管砼主拱密實度及均勻性檢測中的應用[J];西部探礦工程;2006年04期
4 曹宇;;鋼箱桁架上承式拱橋主拱合龍與拆索施工分析[J];黑龍江交通科技;2011年09期
5 奉龍成,劉孝輝,劉亢,黃東;重慶菜園壩長江大橋主拱靜力穩(wěn)定性分析[J];公路交通技術;2005年S1期
6 張克波;羊日華;;茅草街大橋主拱合龍后的受力性能與施工工藝試驗研究[J];橋梁建設;2008年02期
7 ;武漢站首片鋼結構主拱合龍[J];工業(yè)建筑;2009年09期
8 雷運華;;寧德天池大橋主拱施工技術[J];橋梁建設;2008年03期
9 王成;彭念;;三峽庫區(qū)斜坡節(jié)理巖體地基與主拱臺共同作用的三維數(shù)值分析[J];巖石力學與工程學報;2004年S1期
10 姬同庚;洛三高速公路許溝特大橋主拱穩(wěn)定性研究[J];公路交通科技;2004年09期
相關會議論文 前2條
1 段豐華;左釗;;洋山深水港南北閘橋工程主拱施工技術[A];'2009全國鋼結構學術年會論文集[C];2009年
2 徐風云;韓寧奕;徐萬興;;宜賓小南門金沙江大橋240米主拱設計[A];中國土木工程學會橋梁及結構工程學會第九屆年會論文集[C];1990年
相關重要報紙文章 前4條
1 本報記者 劉紹宇;金沙江通陽大橋主拱成功合攏[N];涼山日報(漢);2007年
2 李良蘇 王延中;貴州六圭河大橋主拱合龍[N];中國鐵道建筑報;2004年
3 記者 王嵐 通訊員 王平凱;明州大橋主拱成功合龍[N];寧波日報;2010年
4 通訊員 李茂彬 胡順祥 本報記者 張孔生;京杭大運河將現(xiàn)雙虹臥波[N];揚州日報;2014年
相關碩士學位論文 前4條
1 陳U_嬋;夜郎湖大橋主拱構造及其力學行為研究[D];重慶交通大學;2015年
2 張興標;連續(xù)梁拱組合橋主拱穩(wěn)定性研究[D];西南交通大學;2009年
3 李開心;考慮季節(jié)溫差的主拱安裝線形控制技術研究[D];重慶交通大學;2012年
4 譚巨良;ZTH拱橋主、輔拱管—管連接處受力狀態(tài)和改善措施研究[D];中南大學;2014年
,本文編號:2265531
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2265531.html