不依賴GPS定位理論及方法研究
[Abstract]:Smart car, also called driverless smart vehicle, is the main direction of scientific research and product development in automobile field and vehicle field in recent years. In order to accomplish all kinds of tasks, positioning accuracy and reliability are the most basic and relatively complex problems. In this paper, a new localization algorithm in GPS failure environment is studied in order to compensate the intelligent vehicle for obtaining accurate location information without GPS signal. First of all, in the practical application process, most of the vehicle can not be effectively modeled or installed on the vehicle is not convenient to install mileage meters, at this time, the traditional vehicle kinematics model based on mileage meter will not be applied to vehicle positioning. In order to solve the problem of vehicle location in the absence of mileage, a vehicle motion state estimation model is proposed in this paper. An algorithm is proposed to estimate the vehicle position, attitude and motion state (such as velocity) by the model. An algorithm is proposed to estimate the vehicle position by replacing the mileage meter with the estimated motion state. In order to verify the effectiveness of the algorithm, the proposed algorithm is compared with the model-based vehicle location algorithm, and the simulation data are compared with the Victorian database data of the University of Sydney. Experimental results show that the proposed algorithm can achieve the same positioning accuracy based on odometer. Then, the visual mileage meter is studied and a new method for calculating visual mileage is proposed. The algorithm improves the performance of the visual odometer in dynamic environment by decoupling estimation of rotation and translation. The ideal visual mileometer can estimate the motion of the visual system by observing the static environmental features, but the dynamic features are inevitable in the actual environment. Therefore, how to eliminate the dynamic features and reduce the impact on the performance of the visual odometer is an effective way to improve the performance of the odometer. In this paper, the feature points are divided into "distant points" and "near points" by stereo vision system. In the framework of uniform random estimation of (RANSAC), the "distant points" are used to estimate the attitude of the visual system, and then, when the attitude is known, Use close Point to calculate camera translation. In this way, the influence of close moving object on visual odometer is reduced by attitude constraint. The experimental results show that the proposed algorithm based on rotation-translation decoupling estimation can effectively eliminate the dynamic features and improve the performance of visual odometer compared with the traditional simultaneous estimation of rotation-translation algorithm in the actual road environment. In order to obtain more accurate positioning results, the problem of simultaneous vehicle location and map construction (Simultaneous Localization And Mapping,SLAM) is studied in this paper. SLAM regards vehicle and environment map as a whole, and builds incremental map by estimating vehicle location. Then estimate the location of the vehicle according to the map. Although the existing SLAM algorithms can effectively reduce the cumulative error, most of these algorithms have the problem of excessive linearization error. In this paper, we propose two new SLAM algorithms: SLAM algorithm for square root orthogonal volume transform Kalman filter (SCQKF-SLAM) and SLAM algorithm (CQFastSLAM). Based on orthogonal volume particle filter. Both of these algorithms can solve higher nonlinear accuracy by merging orthogonal volume transform (cubature rule) and Gauss Lagrangian rule (Gauss-Laguerre quadrature rule). Both SCQKF-slam and CQFastSLAM are effective in reducing the linearization accuracy of SLAM by considering the computational cost. The following simulation and database experiments show that the proposed algorithm can effectively improve the accuracy of vehicle location in large-scale environmental maps.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:U495;U463.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 野舟;;SLAM-ER導(dǎo)彈達(dá)到兩項(xiàng)新里程碑[J];戰(zhàn)術(shù)導(dǎo)彈技術(shù);2009年06期
2 龔旭;;艦射SLAM導(dǎo)彈試驗(yàn)成功[J];飛航導(dǎo)彈;1990年11期
3 臧曉京;;英國研究改進(jìn)SLAM[J];飛航導(dǎo)彈;1992年08期
4 何忠;美國將改進(jìn)SLAM導(dǎo)彈[J];中國航天;1994年08期
5 季山;一種宜于鹽堿地種植的高效作物高桿菠菜(SLAM)[J];水利天地;1998年01期
6 叢敏;新技術(shù)將延長捕鯨叉和SLAM導(dǎo)彈的壽命[J];飛航導(dǎo)彈;2001年07期
7 張純學(xué);SLAM-ER概述[J];飛航導(dǎo)彈;2002年04期
8 ;Line-feature-based SLAM Algorithm[J];自動(dòng)化學(xué)報(bào);2006年01期
9 郭劍輝;趙春霞;石杏喜;;一種改進(jìn)的聯(lián)合相容SLAM數(shù)據(jù)關(guān)聯(lián)方法[J];儀器儀表學(xué)報(bào);2008年11期
10 周武;趙春霞;;一種改進(jìn)的邊緣粒子濾波SLAM方法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S1期
相關(guān)會(huì)議論文 前10條
1 ;An SLAM algorithm based on improved UKF[A];第24屆中國控制與決策會(huì)議論文集[C];2012年
2 Adizul Ahmad;Shoudong Huang;Jianguo Jack Wang;Gamini Dissanayake;;A New State Vector for Range-Only SLAM[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年
3 ;A Hybrid SLAM method for service robots in Indoor Environment[A];中國自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
4 Bo He;Tao Zhang;Guijie Liu;;A New SLAM Algorithm Particle Filter-based for Autonomous Underwater Vehicle[A];proceedings of 2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010 no.1)[C];2012年
5 ;AUV SLAM and Closed Loop Research in Large Scale Environment[A];2011年全國通信安全學(xué)術(shù)會(huì)議論文集[C];2011年
6 溫豐;柴曉杰;朱智平;董小明;鄒偉;原魁;;基于新型人工路標(biāo)系統(tǒng)的視覺SLAM算法研究[A];第二十九屆中國控制會(huì)議論文集[C];2010年
7 王宇韜;方勇純;;魯棒單目視覺SLAM系統(tǒng)研究[A];中國自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)C卷[C];2011年
8 李海洋;李洪波;林穎;劉賀平;楊東方;;基于Kinect的SLAM方法[A];2013年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
9 Jiantong Cheng;Jonghyuk Kim;Zhenyu Jiang;Weihua Zhang;;Tightly Coupled SLAM/GNSS for Land Vehicle Navigation[A];第五屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S9 組合導(dǎo)航與導(dǎo)航新方法[C];2014年
10 ;Simultaneous Localization and Map Building Using Constrained State Estimate Algorithm[A];第二十七屆中國控制會(huì)議論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 肖征榮;好軟件少不了它們[N];電腦報(bào);2003年
相關(guān)博士學(xué)位論文 前7條
1 趙一路;人機(jī)交互環(huán)境下的主動(dòng)SLAM及相關(guān)問題研究[D];復(fù)旦大學(xué);2013年
2 康軼非;不依賴GPS定位理論及方法研究[D];北京交通大學(xué);2015年
3 王道斌;基于天空偏振光的SLAM方法的研究[D];中國科學(xué)技術(shù)大學(xué);2014年
4 林睿;基于圖像特征點(diǎn)的移動(dòng)機(jī)器人立體視覺SLAM研究[D];哈爾濱工業(yè)大學(xué);2011年
5 游弋;SLE相關(guān)候選基因FCRL3,SLAM的SNP分析及其功能研究[D];第三軍醫(yī)大學(xué);2008年
6 吳葉斌;基于全景視覺的移動(dòng)機(jī)器人SLAM方法研究[D];哈爾濱工程大學(xué);2011年
7 陳晨;基于Sigma點(diǎn)濾波的移動(dòng)機(jī)器人同時(shí)定位與地圖創(chuàng)建算法的研究[D];北京交通大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 熊斯睿;基于立體全景視覺的移動(dòng)機(jī)器人3D SLAM研究[D];哈爾濱工業(yè)大學(xué);2015年
2 王淮卿;基于互聯(lián)網(wǎng)與SLAM的移動(dòng)機(jī)器人系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 李貴亞;基于立體視覺的機(jī)器人SLAM算法研究[D];哈爾濱工業(yè)大學(xué);2015年
4 薛永勝;變電站巡檢機(jī)器人SLAM算法及其應(yīng)用研究[D];西南科技大學(xué);2015年
5 趙亮;水下機(jī)器人視覺SLAM方法中的圖像特征點(diǎn)提取技術(shù)研究[D];電子科技大學(xué);2014年
6 胡衡;基于單目視覺的SLAM方法研究[D];新疆大學(xué);2015年
7 黃志明;動(dòng)態(tài)稀疏環(huán)境下移動(dòng)機(jī)器人SLAM問題研究[D];北京化工大學(xué);2015年
8 趙新哲;基于改進(jìn)粒子濾波的分布式SLAM算法研究[D];北京工業(yè)大學(xué);2015年
9 李洪臣;單目視覺移動(dòng)機(jī)器人SLAM方法建模與仿真分析[D];電子科技大學(xué);2014年
10 丁潔瓊;基于RGB-D的SLAM算法研究[D];西安電子科技大學(xué);2014年
,本文編號(hào):2251841
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2251841.html