單點(diǎn)信號(hào)交叉口智能控制的優(yōu)化模型和方法研究
[Abstract]:With the promotion of urbanization and the increasing number of motor vehicles, urban road traffic is facing great pressure, congestion problems emerge in endlessly, and delays mainly occur at intersections. The signal control of intersections plays an important role in the healthy operation of road traffic. Because the traditional timing signal control method can not adapt to the random change of traffic flow, the intelligent control method which can adjust the timing scheme in real time according to the change of traffic flow has gradually become an effective solution to improve the traffic efficiency of intersection. Firstly, based on the traditional signal timing, an optimal timing control model is proposed. A multi-objective optimization model based on particle swarm optimization (PSO) was established by considering delay, parking rate and capacity. At the same time, the delay and parking rate are reduced and the capacity of intersection is increased. The validity of the model is verified by practical case study. Secondly, the intelligent control method based on fuzzy control is studied. The fuzzy control method includes green time delay module and phase sequence optimization module. The green light delay module adjusts the green light time according to the vehicle queue length, and the phase sequence optimization module adjusts the phase order according to the demand of different phases for traffic weight. The fuzzy control scheme can intelligently adjust the timing scheme according to the changing traffic flow and reduce the average vehicle delay at the intersection. Then, on the basis of fuzzy control, this paper introduces neural network to establish a fuzzy neural network signal control method. This method can take advantage of the autonomous learning of neural network, train and learn the fuzzy neural network with a large amount of practical data, and obtain an intelligent control scheme which can adapt to traffic flow in different conditions, and effectively improve the running efficiency of intersection. Finally, the traffic signal control simulation model is established based on the actual intersection, and the three control methods proposed in this paper are simulated and analyzed. The comparison of delay shows that the control effect of fuzzy neural network control is the best, the delay relative timing control is 20% -30%, fuzzy control is the second, and relative timing control is 10% -15%. Finally, the variation law of vehicle queue length and timing scheme in the process of fuzzy neural network control simulation is analyzed in detail, the relationship between queue length and timing result is discussed, and the scientific nature of the control method is verified.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.54
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 雒冰;魏麗英;;基于粒子群算法的多效益交叉口信號(hào)配時(shí)模型[J];山東科學(xué);2016年06期
2 熊馳飛;呂智林;葉嫣;;考慮排放因素的公交優(yōu)先信號(hào)控制優(yōu)化方法研究[J];交通信息與安全;2012年04期
3 郭煒杰;包曉安;;單交叉路口交通燈實(shí)時(shí)配時(shí)算法的研究[J];工業(yè)控制計(jì)算機(jī);2012年03期
4 陳小紅;錢大琳;石冬花;;基于慢行交通的交叉口信號(hào)配時(shí)多目標(biāo)優(yōu)化模型[J];交通運(yùn)輸系統(tǒng)工程與信息;2011年02期
5 何兆成;招玉華;趙建明;曾偉良;;基于狀態(tài)判別的單點(diǎn)交叉口信號(hào)配時(shí)優(yōu)化方法[J];公路交通科技;2010年07期
6 曹成濤;徐建閩;;單交叉口交通多目標(biāo)控制方法[J];計(jì)算機(jī)工程與應(yīng)用;2010年16期
7 許倫輝;李民生;;基于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)的交叉口可變相序公交優(yōu)先模糊邏輯控制[J];現(xiàn)代交通技術(shù);2009年03期
8 馬瑩瑩;楊曉光;曾瀅;;信號(hào)控制交叉口周期時(shí)長(zhǎng)多目標(biāo)優(yōu)化模型及求解[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
9 王莉;王明哲;周豐;郭法濱;;實(shí)時(shí)自適應(yīng)交通信號(hào)控制CPN建模分析[J];公路交通科技;2008年06期
10 于萬(wàn)霞;杜太行;鄭宏興;于越;;基于粒子群的模糊神經(jīng)網(wǎng)絡(luò)交通流量預(yù)測(cè)[J];微計(jì)算機(jī)信息;2008年04期
相關(guān)博士學(xué)位論文 前2條
1 周申培;考慮排放因素的城市交叉口交通信號(hào)控制策略的研究[D];武漢理工大學(xué);2009年
2 于萬(wàn)霞;基于流量預(yù)測(cè)的城市單交叉路口多相位交通信號(hào)的控制技術(shù)[D];河北工業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 謝麗珠;考慮車輛尾氣排放因素的公交信號(hào)優(yōu)先控制策略及微觀仿真研究[D];北京交通大學(xué);2015年
2 龔輝波;考慮多車型排放特性的交叉口信號(hào)控制多目標(biāo)優(yōu)化模型[D];北京交通大學(xué);2014年
3 曾松林;城市單交叉路口交通信號(hào)的控制方法研究[D];西南交通大學(xué);2013年
4 彭飛;城市道路平面交叉口信號(hào)配時(shí)優(yōu)化與仿真研究[D];北京交通大學(xué);2012年
5 邵維;基于TD方法的單交叉口信號(hào)配時(shí)優(yōu)化研究[D];長(zhǎng)沙理工大學(xué);2012年
6 劉金明;基于多目標(biāo)規(guī)劃的城市道路交叉口信號(hào)配時(shí)研究[D];北京交通大學(xué);2011年
7 李年源;同時(shí)考慮行人和機(jī)動(dòng)車效益的交叉口信號(hào)控制優(yōu)化模型[D];北京交通大學(xué);2010年
8 陳虹;城市路口交通信號(hào)的自適應(yīng)模糊控制策略研究[D];西南交通大學(xué);2010年
9 胥勇;城市干線信號(hào)協(xié)調(diào)控制方法研究[D];大連理工大學(xué);2009年
10 李政偉;城市單交叉口信號(hào)配時(shí)設(shè)計(jì)與仿真[D];北京交通大學(xué);2008年
,本文編號(hào):2251600
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2251600.html