基于Hadoop的海量交通數(shù)據(jù)研究與應(yīng)用
[Abstract]:In order to better manage the urban road traffic system, people have established the intelligent transportation system. The traffic information is collected and the state of the road is monitored by installing various detection sensors on the city road. However, with the complexity of the road network system and the rapid increase of urban vehicle ownership, the intelligent transportation system has collected a large amount of low-value density information. How to quickly and accurately excavate the useful information to solve the urban road problem in these large-scale low-value data is the goal that the researcher pursues diligently now. In traffic problems, the discrimination and prediction of traffic congestion is an important field. In the past, the method of judging traffic congestion was to determine the normal congestion points by calculating traffic parameters and other data, and then to solve the congestion problem by planning roads and controlling traffic lights. The road state and the real-time command of the police are not taken into account. Moreover, with the increase of data, the geometric increase of computation cost a lot of time and lose the real time of traffic prediction. In addition, the division of traffic district is the middle level of traffic travel law, and reasonable division is helpful to establish effective traffic management measures. Based on the actual data of Hangzhou traffic system, including microwave detection data, floating vehicle GPS data, video surveillance data, road network data and so on, combined with the advantages of Hadoop platform for massive data processing, Do the following innovative research on traffic data mining applications: 1. In this paper, the concept of traffic jam point and the distributed detection algorithm are proposed and solved for the first time. It plays an important role in guiding the real-time optimization of limited police force, and it is essentially different from traffic state classification. By introducing historical congestion probability, the concept of "anomaly" and the distributed computing model are defined for the first time. Furthermore, the accuracy of real-time early warning is improved by "cumulative anomaly" effect. The algorithm has "self-learning" property, which is embodied in the continuous updating of historical congestion probability. Even if traffic organization and road infrastructure change, the applicability of the method will not be greatly affected by .2. A fast distributed density clustering algorithm based on mass traffic data is proposed, which avoids the influence of input parameters of general density clustering algorithm on data clustering, and improves the computational efficiency of density clustering algorithm in the face of big data set. The point density and the distance between points are calculated by the distributed method to cluster the points quickly. It provides the decision basis for the division of traffic district.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中國第一款全線交通數(shù)據(jù)產(chǎn)品問世[J];全球定位系統(tǒng);2008年06期
2 郭亞中;唐夢俠;季錦章;劉昊;;現(xiàn)有交通數(shù)據(jù)中心的升級方案研究[J];中國交通信息化;2013年S1期
3 葉亮;;“大數(shù)據(jù)”背景下我國交通數(shù)據(jù)管理應(yīng)用的轉(zhuǎn)型與發(fā)展[J];交通與運(yùn)輸(學(xué)術(shù)版);2013年02期
4 裴玉龍,馬驥;實(shí)時交通數(shù)據(jù)的篩選與恢復(fù)研究[J];土木工程學(xué)報;2003年07期
5 劉振華;岑晏青;;省級交通數(shù)據(jù)中心建設(shè)模式淺析[J];中國交通信息產(chǎn)業(yè);2007年02期
6 仝楠楠;;中國第一款全線交通數(shù)據(jù)產(chǎn)品問世[J];輕型汽車技術(shù);2008年Z4期
7 韓海航;王強(qiáng);;交通數(shù)據(jù)資源分析視圖應(yīng)用研究[J];公路交通科技(應(yīng)用技術(shù)版);2008年04期
8 王國華;竇慧麗;郭敏;;基于小波分析的交通數(shù)據(jù)自適應(yīng)消噪算法研究[J];計算機(jī)應(yīng)用與軟件;2011年10期
9 施莉娟;朱健;陳小鴻;張yN;;基礎(chǔ)交通數(shù)據(jù)質(zhì)量評價研究[J];交通信息與安全;2011年05期
10 牛世峰;姜桂艷;;交通數(shù)據(jù)質(zhì)量宏觀評價與控制方法[J];公路;2012年12期
相關(guān)會議論文 前5條
1 陳燁;朱景瑜;;實(shí)時交通數(shù)據(jù)在城市環(huán)境中的應(yīng)用及展望[A];第七屆中國智能交通年會優(yōu)秀論文集——智能交通應(yīng)用[C];2012年
2 趙一斌;關(guān)志超;張昕;胡斌;楊東援;;實(shí)時動態(tài)交通擁擠地圖的交通數(shù)據(jù)特征值計算方法分析研究[A];2008第四屆中國智能交通年會論文集[C];2008年
3 高明;李強(qiáng);馬富誠;;地圖數(shù)據(jù)庫交通數(shù)據(jù)的獲取及顯示技術(shù)研究[A];中國地理信息系統(tǒng)協(xié)會第四次會員代表大會暨第十一屆年會論文集[C];2007年
4 晏磊;苗李莉;;面向ITS交通數(shù)據(jù)管理的方法探討[A];中國地理信息系統(tǒng)協(xié)會第八屆年會論文集[C];2004年
5 生昕格;;基于hadoop的交通云數(shù)據(jù)處理平臺設(shè)計[A];第七屆中國智能交通年會優(yōu)秀論文集——智能交通應(yīng)用[C];2012年
相關(guān)重要報紙文章 前1條
1 范文;我第一款全線交通數(shù)據(jù)產(chǎn)品問世[N];科技日報;2008年
相關(guān)博士學(xué)位論文 前1條
1 王清波;城市隧道智能監(jiān)控系統(tǒng)及交通數(shù)據(jù)智能分析[D];武漢理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張林杰;多源交通數(shù)據(jù)自動化采集與處理系統(tǒng)研發(fā)[D];長安大學(xué);2015年
2 袁亞欣;基于Hadoop交通信息并行處理云平臺的設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
3 張作強(qiáng);面向公眾的交通出行服務(wù)系統(tǒng)設(shè)計與實(shí)現(xiàn)[D];大連理工大學(xué);2015年
4 倪升華;基于數(shù)據(jù)的交通擁堵評價與預(yù)測方法[D];浙江工業(yè)大學(xué);2014年
5 王興武;基于Hadoop的海量交通數(shù)據(jù)研究與應(yīng)用[D];浙江工業(yè)大學(xué);2015年
6 李紅旗;中小城市ITS實(shí)時交通數(shù)據(jù)的質(zhì)量控制方法研究[D];長安大學(xué);2014年
7 唐永勇;面向ATMS的交通數(shù)據(jù)管理方法研究[D];吉林大學(xué);2011年
8 李勇伶;服務(wù)于城市交通控制系統(tǒng)的交通數(shù)據(jù)處理技術(shù)研究[D];長安大學(xué);2008年
9 趙禹喬;城市道路交通數(shù)據(jù)檢測器優(yōu)化綜合布設(shè)方法研究[D];長安大學(xué);2011年
10 王鴻博;智能交通數(shù)據(jù)信息分析與處理[D];浙江海洋學(xué)院;2015年
,本文編號:2198841
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2198841.html