多跨曲線連續(xù)剛構(gòu)橋地震反應(yīng)分析
[Abstract]:With the rapid development of highway traffic in the western region of China, a large number of control projects - bridges have been built on high grade highways in mountain areas. The curved bridges can overcome the terrain constraints of the mountain areas well, comply with the overall design requirements of the route, and thus promote the rapid development of the curved rigid frame bridge. Since 1971, San Fernando (San Fernan, USA) Do) after the earthquake, the seismic study of the curved beam bridge started to the Wenchuan earthquake in 2008, and the curve bridges were still subjected to different degrees of earthquake damage. It shows that the scholars at home and abroad are difficult to study the seismic response analysis and seismic performance of the curved bridges, and the law of understanding is insufficient. The curved continuous rigid frame bridge is the engineering background. The dynamic characteristic analysis, the response spectrum analysis and the dynamic time history analysis of the pile soil interaction are established by Midas Civil software. The specific research contents and the conclusions are as follows: (1) the two models of the continuous rigid frame bridge are established by using Midas Civil finite element soft parts. The modal analysis of the bottom consolidation model and the pile soil effect model is carried out and the dynamic characteristics of the two models are compared and the results show that the first order mode period increases by 69.03% after considering the interaction of pile and soil, and the period of the high order mode is corresponding to the consolidation model of the bottom of the pier with the increase of the order of vibration. The cycle gradually approaches, and the ten order self vibration period increases only 6.43%., which indicates that in the soft soil foundation, the pile foundation increases the self vibration period of the structure, but has little effect on the high order mode period. (2) the horizontal bi-directional response spectrum analysis of the curved rigid frame bridge is carried out under the E1 earthquake, and the maximum seismic response is obtained to determine the most unfavorable ground motion level. In the direction of input, the response spectrum analysis and dynamic time history analysis of the pier bottom consolidation model and the pile soil effect model are carried out. It is concluded that the seismic response of the bridge structure is larger than that of the clockwise bridge after the pile soil effect is considered, and the effect of the vertical ground motion can be ignored when the seismic performance of the continuous rigid frame bridge is analyzed; the seismic action can be ignored. The calculation results of the dynamic time history method are not less than 80% of the calculation results of the response spectrum method, which conforms to the newly promulgated regulations for the seismic design of highway bridges. (3) the design of three kinds of bridge piers, namely the original bridge rectangular solid piers, the two limb thin-walled solid piers and the inner octagonal hollow piers, is analyzed. The results show that the two limb thin-walled hollow piers are adopted. In addition to the increase of the internal force of the bridge to the 1# pier, the other piers are obviously reduced, while the internal forces of the transverse bridge to all the piers have little change, and the displacement is greatly increased. The bending moment and shear force of the inner octagonal hollow piers are smaller than the rectangular solid piers, but the displacement of the pier top is only slightly increased; the two limb thin wall solid piers are compared to the pier top and the bottom of the pier. It is suggested that the original rectangular solid pier should be replaced by the inner octagonal hollow pier, which has better seismic performance.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U442.55;U448.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔光耀;伍修剛;王明年;林國進(jìn);;汶川8.0級大地震公路隧道震害調(diào)查與震害特征[J];現(xiàn)代隧道技術(shù);2017年02期
2 齊秀廷;姚永春;;高墩連續(xù)剛構(gòu)橋地震響應(yīng)影響因素分析[J];鐵道科學(xué)與工程學(xué)報;2017年01期
3 鄭曉龍;鄢勇;樊啟武;;考慮橋墩溫差效應(yīng)的車橋動力分析研究[J];鐵道工程學(xué)報;2015年08期
4 YIN Xiao;WU Di;;Seismic analysis of long-span continuous rigid frame bridges in cold regions:a case study of Bridge 1 in north of international tourism resort in Changbai Mountain[J];Global Geology;2015年02期
5 婁鋒;;大跨斜拉橋多點(diǎn)反應(yīng)譜法地震響應(yīng)分析[J];世界地震工程;2015年02期
6 宋飛;李建中;管仲國;;汶川地震百花大橋震害分析[J];振動與沖擊;2015年08期
7 陳亮;任偉新;張廣鋒;左小晗;黃勇;;基于性能的橋梁抗震設(shè)計中考慮持時的實際地震波優(yōu)化選擇方法[J];振動與沖擊;2015年03期
8 崔光耀;劉維東;倪嵩陟;王明年;林國進(jìn);;汶川地震各地震烈度區(qū)公路隧道震害特征研究[J];現(xiàn)代隧道技術(shù);2014年06期
9 盧斌;王凱華;李高超;賀拴海;;設(shè)計參數(shù)對空腹式連續(xù)剛構(gòu)橋關(guān)鍵截面內(nèi)力的影響[J];公路交通科技;2014年12期
10 杜修力;韓強(qiáng);;橋梁抗震研究若干進(jìn)展[J];地震工程與工程振動;2014年04期
相關(guān)博士學(xué)位論文 前1條
1 盧斌;空腹式連續(xù)剛構(gòu)橋靜動力學(xué)特性[D];長安大學(xué);2014年
相關(guān)碩士學(xué)位論文 前9條
1 曾德益;山區(qū)高邊中跨比連續(xù)剛構(gòu)橋懸臂施工設(shè)計優(yōu)化研究[D];重慶交通大學(xué);2015年
2 徐超;大跨高墩連續(xù)剛構(gòu)橋橋墩結(jié)構(gòu)型式研究[D];重慶交通大學(xué);2014年
3 劉江龍;高墩大跨剛構(gòu)橋抗震性能研究[D];中國地震局工程力學(xué)研究所;2014年
4 徐小童;大跨徑高墩連續(xù)剛構(gòu)橋懸臂施工過程中地震響應(yīng)研究[D];重慶交通大學(xué);2013年
5 謝陳貴;高速鐵路大跨不對稱連續(xù)剛構(gòu)橋施工控制及風(fēng)致穩(wěn)定性研究[D];中南大學(xué);2013年
6 崔同松;大跨徑斜拉—剛構(gòu)組合體系橋地震響應(yīng)分析[D];長安大學(xué);2013年
7 侯鵬飛;高墩大跨度連續(xù)剛構(gòu)橋梁結(jié)構(gòu)抗震性能研究[D];中南大學(xué);2010年
8 黃慶偉;高墩大跨曲線連續(xù)剛構(gòu)橋非線性地震反應(yīng)分析[D];西南交通大學(xué);2004年
9 ?∥;橋跨結(jié)構(gòu)設(shè)計參數(shù)對高墩連續(xù)剛構(gòu)橋抗震性能影響分析[D];長安大學(xué);2004年
,本文編號:2166684
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2166684.html