基于分離迭代法的汽車—連續(xù)體系梁橋時(shí)變系統(tǒng)耦合振動(dòng)研究
[Abstract]:In recent years, with the increase of traffic volume, the increase of driving speed and the increasing trend of vehicle overload, the interaction between vehicle and bridge is becoming more and more important. At the same time, continuous system beam bridges (including continuous beam bridges and simple supported and then continuous girder bridges) are widely used in highway bridges. The vehicle-bridge coupling dynamic response and its influencing factors need to be deeply studied. In addition, due to the special construction technology, the force and stiffness distribution of the simple supported and then continuous beam bridges are constantly changing in the process of system transformation, and the final state of the bridge is different from the corresponding continuous beam bridges. The comparative analysis of the vehicle-bridge coupling dynamic response and its influencing factors between the continuous beam bridge and the first supported and then continuous beam bridge is worth discussing. Therefore, according to the theory of vehicle-bridge coupling vibration analysis based on the separated iteration method, the finite element program of vibration analysis of vehicle-continuous system beam bridge coupling system is compiled by APDL language of ANSYS software, which is based on continuous system beam bridge engineering. The vehicle-bridge coupling dynamic response and its influencing factors of continuous beam bridge and simple supported continuous beam bridge are compared and analyzed. The main research contents are as follows: 1. The dynamic analysis model of vehicle-continuous system beam bridge coupling system is established. The dynamic analysis model of continuous system beam bridge (including continuous beam bridge and continuous beam bridge with simple support and then continuous beam bridge) is established by ANSYS software. The vehicle is discretized as a multi-rigid body system connected by spring and damper. Taking a three-axle six-wheel vehicle as an example, the main parameters needed to establish the vehicle spatial vibration analysis model are introduced. Nine degrees of freedom are considered in the vehicle model. The bridge deck irregularity is regarded as a stationary random process. After selecting its power spectral density function, the triangular series method is used to simulate the sample value by MATLAB language. The vibration equation of vehicle-continuous system beam-bridge coupling system is derived. The vehicle and bridge are divided into two subsystems: vehicle and bridge. The theory of vehicle-bridge coupling vibration is based on the separation iteration method. The vibration equation of vehicle and bridge in the vehicle-bridge coupling system is established by the relationship between the displacement coordination between the wheel and the bridge deck and the equilibrium condition of the vehicle-bridge interaction force. The vibration analysis program of vehicle-continuous system beam-bridge coupling system is compiled. Based on the theory of vehicle-bridge coupling vibration analysis based on the separation iteration method, the vibration analysis program of vehicle-continuous system beam-bridge coupling system is compiled by using APDL language of ANSYS software. The reliability of the program is verified by an example. As an example, the multi-rigid body model connected by spring and damping element is used to solve the motion equation of automobile and bridge by Newmark- 尾 method. The dynamic response of automobile and bridge is obtained by cyclic iteration. The vehicle-bridge coupling vibration analysis of continuous beam bridge takes a continuous beam bridge as an object of study, adopts a three-axle vehicle model, calculates the dynamic response of the vehicle-continuous beam bridge coupling system by using a self-compiled program, studies the number of vehicles, vehicle spacing, and different lanes. The effects of the factors such as vehicle heading, pavement grade, vehicle suspension stiffness, vehicle suspension damping, tire stiffness, tire damping and speed on the dynamic response of vehicle-bridge are analyzed and evaluated. The analysis of vehicle-bridge coupling vibration of the first simply supported and then continuous beam bridge is based on the dynamic analysis model of the first simply supported and then continuous beam bridge with the same cross-section characteristics as the above continuous beam bridge. On the premise of not dividing the construction stage, the model can take into account the stress characteristics of simply supported and then continuous beam bridges and the difference between the completed state and the continuous beam bridges. The vibration response of the bridge and vehicle-bridge coupling and its influencing factors are analyzed, and the dynamic response of the bridge is compared with that of the continuous beam bridge.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U441.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙志軍;;車橋耦合振動(dòng)數(shù)值分析[J];交通標(biāo)準(zhǔn)化;2013年01期
2 滿洪高,袁向榮;車橋耦合振動(dòng)問(wèn)題的發(fā)展進(jìn)程與研究現(xiàn)狀[J];鐵道工程學(xué)報(bào);2001年02期
3 沈火明,肖新標(biāo);求解車橋耦合振動(dòng)問(wèn)題的一種數(shù)值方法[J];西南交通大學(xué)學(xué)報(bào);2003年06期
4 任劍瑩,蘇木標(biāo),高楊;鋼軌內(nèi)側(cè)涂油的減振機(jī)理及其對(duì)車橋耦合振動(dòng)的影響[J];石家莊鐵道學(xué)院學(xué)報(bào);2003年02期
5 肖新標(biāo),沈火明;3種車橋耦合振動(dòng)分析模型的比較研究[J];西南交通大學(xué)學(xué)報(bào);2004年02期
6 岳祖潤(rùn),周宏業(yè);一種鐵路車橋耦合振動(dòng)三維仿真的實(shí)現(xiàn)[J];鐵道學(xué)報(bào);2005年03期
7 張曉軍;;車橋耦合振動(dòng)的研究[J];山西建筑;2007年11期
8 陳上有;夏禾;戰(zhàn)家旺;;基于車橋耦合振動(dòng)分析的橋梁損傷診斷方法評(píng)述[J];中國(guó)安全科學(xué)學(xué)報(bào);2007年08期
9 張鈞博;高芳清;;公路橋梁車橋耦合振動(dòng)的隨機(jī)響應(yīng)分析[J];路基工程;2008年03期
10 王樹蘭;唐光武;;拱橋車橋耦合振動(dòng)的研究[J];交通標(biāo)準(zhǔn)化;2009年01期
相關(guān)會(huì)議論文 前10條
1 肖艷平;沈火明;;連續(xù)梁車橋耦合振動(dòng)方法比較及特性分析[A];中國(guó)交通土建工程學(xué)術(shù)論文集(2006)[C];2006年
2 盧凱良;宓為建;張衛(wèi)國(guó);;環(huán)境激勵(lì)下自動(dòng)化碼頭車橋耦合振動(dòng)分析和結(jié)構(gòu)安全評(píng)估[A];第21屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅱ冊(cè)[C];2012年
3 王衛(wèi)東;曾宇清;王新銳;于衛(wèi)東;;輪軌潤(rùn)滑對(duì)脫軌安全性及車橋耦合振動(dòng)的影響[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(下冊(cè))[C];2001年
4 張曉宇;彭獻(xiàn);馬俊升;張瑞鶴;趙躍宇;;兩種車橋耦合振動(dòng)接觸模型的比較研究[A];第21屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅱ冊(cè)[C];2012年
5 張高明;顏鋒;錢基宏;;基于車橋耦合振動(dòng)原理的列車激勵(lì)計(jì)算方法[A];第十四屆空間結(jié)構(gòu)學(xué)術(shù)會(huì)議論文集[C];2012年
6 潘劍超;徐榮橋;葉貴如;;基于狀態(tài)空間法的車橋耦合振動(dòng)分析[A];第22屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2013年
7 何發(fā)禮;寧曉駿;李喬;;曲線梁橋彎曲和扭轉(zhuǎn)剛度對(duì)車橋耦合振動(dòng)的影響[A];第八屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅲ卷)[C];1999年
8 丁勇;謝旭;黃劍源;;考慮橋面板局部振動(dòng)的全有限元車橋耦合振動(dòng)分析[A];第十九屆全國(guó)橋梁學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2010年
9 凌知民;高碧波;項(xiàng)海帆;;橫風(fēng)對(duì)高墩橋梁車橋耦合振動(dòng)影響機(jī)理分析[A];第十八屆全國(guó)橋梁學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
10 晏路曼;陳水生;;公路曲線梁橋車橋耦合振動(dòng)分析[A];第六屆全國(guó)土木工程研究生學(xué)術(shù)論壇論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 杜若原;荊江彩虹連鄂湘[N];人民日?qǐng)?bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 劉世忠;雙層公路鋼桁梁橋車橋耦合振動(dòng)研究[D];長(zhǎng)安大學(xué);2015年
2 逄煥平;大跨度懸索橋計(jì)算理論及其車橋耦合振動(dòng)分析[D];合肥工業(yè)大學(xué);2010年
3 胡曉燕;大跨度公路橋梁車橋耦合振動(dòng)響應(yīng)研究[D];武漢理工大學(xué);2009年
4 崔圣愛;基于多體系統(tǒng)動(dòng)力學(xué)和有限元法的車橋耦合振動(dòng)精細(xì)化仿真研究[D];西南交通大學(xué);2009年
5 黃林;列車風(fēng)與自然風(fēng)聯(lián)合作用下的車—橋耦合振動(dòng)分析[D];西南交通大學(xué);2007年
6 盛可鑒;簡(jiǎn)支轉(zhuǎn)連續(xù)梁橋的幾個(gè)關(guān)鍵問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2013年
7 王立峰;大角度V撐蝶形拱式連續(xù)梁橋受力性能的研究[D];東北林業(yè)大學(xué);2013年
8 孫松建;連續(xù)梁橋地震損傷控制與數(shù)值模擬[D];天津大學(xué);2012年
9 張通;大跨剛構(gòu)—連續(xù)梁橋的全壽命性能監(jiān)測(cè)與分析[D];哈爾濱工業(yè)大學(xué);2008年
10 周大興;考慮土—結(jié)構(gòu)相互作用大跨徑連續(xù)梁橋抗震性能研究[D];北京工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉桂滿;多線鐵路斜拉橋車橋耦合振動(dòng)仿真研究[D];西南交通大學(xué);2015年
2 鮑玉龍;懸掛式單軌交通系統(tǒng)車橋耦合振動(dòng)仿真研究[D];西南交通大學(xué);2015年
3 劉義虎;基于多體動(dòng)力學(xué)的80m拱橋車橋耦合振動(dòng)研究[D];西南交通大學(xué);2015年
4 張衛(wèi)國(guó);千米級(jí)斜拉橋車橋耦合振動(dòng)分析[D];哈爾濱工業(yè)大學(xué);2015年
5 鞠炳照;基于車橋耦合振動(dòng)的混凝土簡(jiǎn)支梁橋損傷診斷方法[D];哈爾濱工業(yè)大學(xué);2015年
6 劉泓澤;箱形彎梁橋車橋耦合振動(dòng)分析[D];石家莊鐵道大學(xué);2014年
7 洪沁燁;徐變及溫度效應(yīng)對(duì)中低速磁浮大跨連續(xù)梁車橋耦合振動(dòng)的影響[D];西南交通大學(xué);2016年
8 吳宇鵬;基于多體動(dòng)力學(xué)和有限元法研究車—橋耦合振動(dòng)[D];華東交通大學(xué);2016年
9 王星燦;鐵路新型搶修鋼梁車橋耦合振動(dòng)分析[D];石家莊鐵道大學(xué);2016年
10 鄒啟令;車橋耦合振動(dòng)數(shù)值模型的確定性和不確定性分析方法[D];湖南大學(xué);2016年
,本文編號(hào):2133549
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2133549.html