基于AHP-Apriori算法的事故成因研究
[Abstract]:The problem of traffic safety has become a major problem which is concerned and explored in the world. The occurrence of traffic accidents is unexpected, accidental, and controlled by various factors, which is the comprehensive result of the interaction of various factors. If we can find the interaction between the rules contained in the accident data, such as road condition, vehicle condition, time, weather and accident type in the attribute of the accident itself, the accident form, and so on, we can do a good job of safety prevention measures in advance. If the risk of accident is controlled, it can effectively prevent the accident and reduce its harm. At present, local road traffic management departments have carried out detailed records of accident data, and built a traffic accident information system. However, the traditional probability regression analysis method, which is based on statistics, still ignores the overall feature description of traffic accident data, which is more decision-making significance, and the correlation between the data. The law of traffic accident occurrence and the forecast of development trend. The collected traffic data are not fully mined and applied, and the jumbled raw data occupy a large amount of storage space, resulting in a waste of resources. Based on the road traffic accident database of the Ministry of Public Security, this paper adopts data mining technology, according to the multi-dimensional and hierarchical characteristics of the cause of the traffic accident, starting from the driver, the vehicle, the road and the environment. On the basis of objective analysis, the causes of traffic accidents are quantified, and the accident model based on AHP-Apriori algorithm is constructed. Firstly, AHP is used to rank the importance of the causes of accidents to find out the main factors affecting the accidents. Association rules algorithm is used to analyze the main influencing factors. The analysis shows that this method can determine the combination risk of various accident factors under different conditions and the space-time characteristics of accidents, especially in the case of large traffic accident data samples, which can improve the calculation efficiency and accuracy of the analysis. Finally, the road safety level is evaluated and early warning based on the algorithm, and safety management suggestions and road safety measures are put forward to guide the traffic management department to make decisions, to put an end to the hidden trouble of the accident, and to reduce the occurrence of the accident. Eventually improve the safety level of the road.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U491.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鞏建強(qiáng);肖媛;商建偉;;公路交通事故駕駛員事故前操作行為模式研究[J];武漢理工大學(xué)學(xué)報;2012年03期
2 馬愛霞;白建平;趙一姝;曹淑上;易俊;蔡治勇;;事故樹分析在交通事故原因分析中的應(yīng)用[J];重慶科技學(xué)院學(xué)報(社會科學(xué)版);2009年08期
3 許卉瑩;包勇強(qiáng);江海龍;陳學(xué)浩;季君;;道路交通事故數(shù)據(jù)分析挖掘技術(shù)研究[J];中國人民公安大學(xué)學(xué)報(自然科學(xué)版);2008年04期
4 郭金玉;張忠彬;孫慶云;;層次分析法的研究與應(yīng)用[J];中國安全科學(xué)學(xué)報;2008年05期
5 劉軍;艾力.斯木吐拉;馬曉松;;基于數(shù)據(jù)挖掘技術(shù)的交通事故分析[J];交通與計算機(jī);2008年01期
6 羅春紅;謝賢平;;事故致因理論的比較分析[J];中國安全生產(chǎn)科學(xué)技術(shù);2007年05期
7 劉以安;羊斌;;關(guān)聯(lián)規(guī)則挖掘中對Apriori算法的一種改進(jìn)研究[J];計算機(jī)應(yīng)用;2007年02期
8 宋祥波;肖貴平;賈明濤;;基于層次分析法的機(jī)車行車安全評價研究[J];中國安全生產(chǎn)科學(xué)技術(shù);2006年06期
9 彭鵬峰;許新權(quán);;改善我國道路交通安全狀況的措施[J];道路交通與安全;2006年09期
10 覃容,彭冬芝;事故致因理論探討[J];華北科技學(xué)院學(xué)報;2005年03期
相關(guān)博士學(xué)位論文 前1條
1 郭秀娟;基于關(guān)聯(lián)規(guī)則數(shù)據(jù)挖掘算法的研究[D];吉林大學(xué);2004年
相關(guān)碩士學(xué)位論文 前5條
1 司遠(yuǎn);低等級公路交通安全預(yù)警研究[D];北京交通大學(xué);2014年
2 薛冰冰;高速公路危險路段交通安全預(yù)警系統(tǒng)研究[D];吉林大學(xué);2013年
3 洪雪飛;基于粗糙集的數(shù)據(jù)挖掘算法的研究與應(yīng)用[D];北京交通大學(xué);2008年
4 王寧;城市道路交通安全預(yù)警系統(tǒng)理論研究[D];華中科技大學(xué);2007年
5 洪建勛;ITS中交通信息系統(tǒng)的理論技術(shù)及其應(yīng)用研究[D];武漢理工大學(xué);2002年
本文編號:2130938
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2130938.html