山區(qū)高速公路危險(xiǎn)品運(yùn)輸事故預(yù)測(cè)及危險(xiǎn)評(píng)估研究
本文選題:山區(qū)高速公路 + 危險(xiǎn)品運(yùn)輸。 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:隨著我國國民經(jīng)濟(jì)的快速增長,公路建設(shè)里程數(shù)也在不停地增加。較以往相對(duì)施工難度大、投資費(fèi)用高的山區(qū)道路也有較大的發(fā)展,山區(qū)的道路里程和路網(wǎng)密度都有顯著的提升,危險(xiǎn)品道路運(yùn)輸量也快速增長。根據(jù)歷史數(shù)據(jù)顯示,我國近一半的危險(xiǎn)品運(yùn)輸事故發(fā)生在山區(qū)道路。由于事故發(fā)生點(diǎn)地理位置特殊,救援難度大,加之危險(xiǎn)品的特殊危害性,所以事故一旦發(fā)生,往往會(huì)造成巨大的后果。因此,本文以山區(qū)高速公路危險(xiǎn)品運(yùn)輸為切入點(diǎn)進(jìn)行研究。首先,通過對(duì)比山區(qū)高速公路和平原區(qū)高速公路事故影響因素的不同,得出道路因素是導(dǎo)致山區(qū)高速公路交通事故最主要的因素。在此基礎(chǔ)上,分析了山區(qū)高速公路的特點(diǎn),闡述了橋梁、隧道、彎道、坡度對(duì)交通運(yùn)輸安全的影響。然后,闡述了山區(qū)高速公路危險(xiǎn)品運(yùn)輸風(fēng)險(xiǎn)預(yù)測(cè)的現(xiàn)狀及特點(diǎn),并分別介紹了常用預(yù)測(cè)模型及其優(yōu)缺點(diǎn)。結(jié)合山區(qū)高速公路影響因素多且不確定的特點(diǎn),選用預(yù)測(cè)精度較高的灰色GM (1,1)與BP神經(jīng)網(wǎng)絡(luò)組合算法對(duì)濟(jì)青高速南線(G22東段)高速公路沂源路段進(jìn)行危險(xiǎn)品運(yùn)輸事故量的預(yù)測(cè),充分利用了灰色預(yù)測(cè)需求樣本數(shù)據(jù)少,神經(jīng)網(wǎng)絡(luò)非線性擬合能力強(qiáng)的優(yōu)點(diǎn)。由所得預(yù)測(cè)值,判斷此路段危險(xiǎn)品運(yùn)輸風(fēng)險(xiǎn),同時(shí)為交通管理部門的管理和規(guī)劃提供數(shù)據(jù)支撐。最后,采用模擬軟件ALOHA,通過對(duì)影響因素進(jìn)行優(yōu)化、篩選,利用軟件針對(duì)選取位置濟(jì)青高速南線(G22東段)青島方向K219.073樁號(hào)處(118°22'E,36°06'N)進(jìn)行危險(xiǎn)品運(yùn)輸事故的危害等級(jí)和危險(xiǎn)范圍模擬。為危險(xiǎn)品運(yùn)輸事故救援提供理論支持,為山區(qū)高速公路危險(xiǎn)品運(yùn)輸事故應(yīng)急響應(yīng)提供幫助。
[Abstract]:With the rapid growth of our national economy, highway construction mileage is also increasing. Compared with the previous construction, the mountain roads with high investment cost also have great development. The road mileage and road network density of mountain areas have been significantly increased, and the volume of dangerous goods road transportation has also increased rapidly. According to historical data, nearly half of dangerous goods transportation accidents in China occur on mountain roads. Because of the special location of the accident location, the difficulty of rescue, and the special harm of dangerous goods, once the accident occurs, it will often cause huge consequences. Therefore, this article takes the mountain highway dangerous goods transportation as the breakthrough point to carry on the research. Firstly, by comparing the influence factors of expressway accidents in mountainous area and plain area, it is concluded that road factor is the most important factor leading to traffic accidents in mountainous expressway. On this basis, the characteristics of highway in mountainous area are analyzed, and the influence of bridge, tunnel, bend and slope on traffic and transportation safety is expounded. Then, the paper expounds the present situation and characteristics of dangerous goods transportation risk prediction in mountain expressway, and introduces the common forecasting models and their advantages and disadvantages respectively. Combined with the characteristics of many and uncertain influencing factors of expressway in mountainous area, the combined algorithm of grey GM (1 + 1) and BP neural network, which has high prediction precision, is used to forecast the traffic accident of dangerous goods in Yiyuan section of Jiqing South Highway (G22 East Section). It makes full use of the advantages of less sample data of grey forecasting and strong nonlinear fitting ability of neural network. According to the predicted value, the risk of dangerous goods transportation in this section is judged, and the data support for the management and planning of traffic management department is provided at the same time. Finally, the simulation software ALOHAA was used to optimize and screen the influencing factors, and the harm grade and dangerous range of dangerous goods transportation accidents were simulated by the software aiming at selecting the position of K219.073 pile (118 擄22) in Qingdao direction of Ji-Qing Expressway South Line (G22 East Section). It provides theoretical support for the rescue of dangerous goods transportation accidents and provides help for the emergency response of dangerous goods transportation accidents on mountain highways.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U492.336.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂明新;孫婷婷;孫德正;;基于GIS的公路危險(xiǎn)品事故應(yīng)急響應(yīng)系統(tǒng)研究[J];中國市場(chǎng);2016年28期
2 胡燕倩;;我國;肺锪靼l(fā)展的現(xiàn)狀、原因及策略分析——基于發(fā)達(dá)國家危險(xiǎn)品運(yùn)輸管理經(jīng)驗(yàn)的借鑒[J];對(duì)外經(jīng)貿(mào)實(shí)務(wù);2013年05期
3 沈陽;;ALOHA在放射性污染物的Gaussian擴(kuò)散模型中的應(yīng)用[J];中國安全生產(chǎn)科學(xué)技術(shù);2012年08期
4 孔大令;;基于ALOHA軟件快速模擬液氨泄漏警戒范圍[J];消防科學(xué)與技術(shù);2011年01期
5 張玉春;何川;吳德興;曾艷華;;高速公路隧道交通事故特性及其防范措施[J];西南交通大學(xué)學(xué)報(bào);2009年05期
6 相艷景;劉茂;張永強(qiáng);鄔長城;;ALOHA軟件模擬分析環(huán)氧乙烷儲(chǔ)罐泄漏事故[J];中國公共安全(學(xué)術(shù)版);2008年Z1期
7 唐少佳;王煒;劉茂;;ALOHA在危險(xiǎn)品公路運(yùn)輸應(yīng)急決策支持系統(tǒng)中的應(yīng)用[J];安全與環(huán)境學(xué)報(bào);2007年04期
8 張建文;安宇;魏利軍;;化學(xué)危險(xiǎn)品事故應(yīng)急響應(yīng)大氣擴(kuò)散模型評(píng)述[J];中國安全科學(xué)學(xué)報(bào);2007年06期
9 任常興;吳宗之;;危險(xiǎn)品道路運(yùn)輸風(fēng)險(xiǎn)評(píng)價(jià)與優(yōu)化選線的研究進(jìn)展[J];安全與環(huán)境學(xué)報(bào);2007年03期
10 張愛霞;朱明;趙亮;;道路交通事故預(yù)測(cè)模型的構(gòu)建與應(yīng)用[J];河北理工學(xué)院學(xué)報(bào);2007年02期
相關(guān)碩士學(xué)位論文 前1條
1 莊英偉;LPG罐車公路運(yùn)輸風(fēng)險(xiǎn)評(píng)價(jià)方法及應(yīng)用研究[D];首都經(jīng)濟(jì)貿(mào)易大學(xué);2004年
,本文編號(hào):2058405
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2058405.html