城市電動(dòng)汽車充電站選址布局研究
本文選題:電動(dòng)汽車充電站 + 充電需求 ; 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:當(dāng)前的能源和環(huán)境危機(jī)迫使各國都在積極尋找解決方案,由于電動(dòng)汽車能源轉(zhuǎn)化效率高和近乎零污染的特點(diǎn),發(fā)展電動(dòng)汽車產(chǎn)業(yè)已經(jīng)成為緩解當(dāng)前危機(jī)一個(gè)重要舉措,受到各國政府的高度重視。但目前充電基礎(chǔ)服務(wù)設(shè)施建設(shè)與電動(dòng)汽車的發(fā)展相比相對(duì)滯后,已經(jīng)成為制約其發(fā)展的一個(gè)重要因素,因此加快電動(dòng)汽車充電基礎(chǔ)服務(wù)設(shè)施建設(shè)對(duì)促進(jìn)電動(dòng)汽車的推廣和普及具有重大意義。對(duì)于充電站的建設(shè),其前期的選址布局工作是否合理直接影響著服務(wù)質(zhì)量,進(jìn)而影響著電動(dòng)汽車整個(gè)行業(yè)的發(fā)展。本文基于此背景對(duì)城市電動(dòng)汽車充電站的選址布局優(yōu)化展開研究。首先,論文介紹了電動(dòng)汽車的種類及其相比于傳統(tǒng)燃油汽車的優(yōu)點(diǎn),并對(duì)電動(dòng)汽車不同的充電模式分別做了詳細(xì)介紹和比較,總結(jié)出了不同充電模式的特點(diǎn)及其所適用的對(duì)象。分析了影響電動(dòng)汽車充電站選址布局的影響因素和選址布局的原則,介紹了幾種經(jīng)典的選址理論模型,并對(duì)其適用對(duì)象和優(yōu)缺點(diǎn)做了分析。其次,采用彈性系數(shù)法對(duì)青島市黃島區(qū)電動(dòng)汽車的保有量和充電樁的數(shù)量做了預(yù)測(cè)。通過對(duì)電動(dòng)汽車出行特性的分析,根據(jù)重力模型法對(duì)各個(gè)交通小區(qū)之間的交通阻抗、出行產(chǎn)生強(qiáng)度、出行吸引強(qiáng)度做了量化,并對(duì)所涉及的參數(shù)進(jìn)行標(biāo)定,預(yù)測(cè)出了各個(gè)交通小區(qū)的電動(dòng)汽車的出行分布量。并依據(jù)高峰小時(shí)流量比預(yù)測(cè)了各交通小區(qū)的充電需求量。最后,論文結(jié)合影響充電站選址布局的因素和布局原則,通過對(duì)充電站選址布局做出合理假設(shè),在充電設(shè)施規(guī)模限制條件下建立了以充電總耗時(shí)最少為目標(biāo)的選址布局模型,并利用遺傳算法求解模型。論文以黃島區(qū)為研究對(duì)象,用MATLAB編程,求得在充電設(shè)施規(guī)模限制條件下的充電站最優(yōu)選址布局和充電樁的分配。通過研究發(fā)現(xiàn),在服務(wù)率一定的前提下,增加充電樁的總數(shù),充電站的布局成分散化趨勢(shì),在一定的范圍內(nèi),當(dāng)增加充電樁總數(shù),系統(tǒng)總耗時(shí)下降明顯,邊際效益顯著提升,應(yīng)保證充電站建設(shè)適度超前。算例驗(yàn)證了模型的有效性,對(duì)城市充電站的選址布局有一定的借鑒意義。
[Abstract]:The current energy and environmental crisis has forced all countries to actively seek solutions. Due to the characteristics of high energy conversion efficiency and near-zero pollution of electric vehicles, developing the electric vehicle industry has become an important measure to alleviate the current crisis. It is highly valued by the governments of all countries. However, compared with the development of electric vehicles, the construction of charging infrastructure has lagged behind, and has become an important factor restricting the development of electric vehicles. Therefore, it is of great significance to speed up the construction of electric vehicle charging infrastructure for the promotion and popularization of electric vehicles. For the construction of charging station, whether the location and layout of the charging station is reasonable or not directly affects the service quality, and then affects the development of the whole electric vehicle industry. Based on this background, this paper studies the location and layout optimization of urban electric vehicle charging station. Firstly, this paper introduces the types of electric vehicles and their advantages compared with traditional fuel vehicles, and compares the different charging modes of electric vehicles in detail, and summarizes the characteristics of different charging modes and their applicable objects. This paper analyzes the influencing factors and principles of location layout of charging station for electric vehicles, introduces several classical location theory models, and analyzes the applicable object, advantages and disadvantages of these models. Secondly, the elastic coefficient method is used to predict the quantity of electric vehicles and the number of charging piles in Huangdao District of Qingdao City. Based on the analysis of the travel characteristics of electric vehicles, the traffic impedance, trip intensity and trip attraction intensity of each traffic district are quantified according to the gravity model method, and the parameters involved are calibrated. The travel distribution of electric vehicles in each traffic district is predicted. According to the peak hour flow ratio, the charge demand of each traffic district is predicted. Finally, combined with the factors and principles that affect the layout of charging station location, through the reasonable assumption of the location layout of charging station, a location layout model with the goal of the least time consuming of charging facilities is established under the condition of limited scale of charging facilities. Genetic algorithm is used to solve the model. In this paper, Huangdao District is taken as the research object, and MATLAB programming is used to obtain the optimal location layout of charging station and the distribution of charging pile under the condition of limited scale of charging facilities. Through the research, it is found that under the premise of a certain service rate, increasing the total number of charging piles, the layout of charging station becomes a decentralized trend. In a certain range, when the total number of charging piles is increased, the total time consuming of the system decreases obviously, and the marginal benefit is significantly improved. The charging station construction should be guaranteed to be moderately ahead of schedule. An example is given to verify the validity of the model, which is useful for the location and layout of urban charging stations.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 溫洋;;關(guān)于在新能源汽車產(chǎn)業(yè)化過程中重視發(fā)展空氣動(dòng)力汽車的建議[J];中國經(jīng)貿(mào)導(dǎo)刊;2014年09期
2 高亞靜;郭艷東;李天天;;城市電動(dòng)汽車充電站兩步優(yōu)化選址方法[J];中國電力;2013年08期
3 高賜威;張亮;薛飛;劉紅超;;考慮集中型充電站定址分容的電網(wǎng)規(guī)劃研究[J];中國電機(jī)工程學(xué)報(bào);2012年07期
4 任玉瓏;史樂峰;張謙;韓維建;黃守軍;;電動(dòng)汽車充電站最優(yōu)分布和規(guī)模研究[J];電力系統(tǒng)自動(dòng)化;2011年14期
5 羅卓偉;胡澤春;宋永華;楊霞;占愷嶠;吳俊陽;;電動(dòng)汽車充電負(fù)荷計(jì)算方法[J];電力系統(tǒng)自動(dòng)化;2011年14期
6 李菱;李燕青;姚玉海;葛曼;;基于遺傳算法的電動(dòng)汽車充電站的布局規(guī)劃[J];華東電力;2011年06期
7 周洪超;李海鋒;;基于博弈論的電動(dòng)汽車充電站選址優(yōu)化模型研究[J];科技和產(chǎn)業(yè);2011年02期
8 田立亭;史雙龍;賈卓;;電動(dòng)汽車充電功率需求的統(tǒng)計(jì)學(xué)建模方法[J];電網(wǎng)技術(shù);2010年11期
9 寇凌峰;劉自發(fā);周歡;;區(qū)域電動(dòng)汽車充電站規(guī)劃的模型與算法[J];現(xiàn)代電力;2010年04期
10 徐凡;俞國勤;顧臨峰;張華;;電動(dòng)汽車充電站布局規(guī)劃淺析[J];華東電力;2009年10期
相關(guān)博士學(xué)位論文 前1條
1 姜星莉;經(jīng)濟(jì)全球化背景下中國能源安全問題研究[D];武漢大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 李鑫;黑龍江地區(qū)電動(dòng)汽車充換電站需求預(yù)測(cè)及規(guī)劃研究[D];華北電力大學(xué);2014年
2 張國亮;城市內(nèi)和城市間電動(dòng)汽車充電站的選址布局研究[D];天津大學(xué);2012年
3 宋亞輝;城市電動(dòng)汽車充電設(shè)施布局規(guī)劃研究[D];北京交通大學(xué);2011年
4 曹道友;基于改進(jìn)遺傳算法的應(yīng)用研究[D];安徽大學(xué);2010年
5 李民;基于活動(dòng)鏈的居民出行行為分析[D];吉林大學(xué);2004年
,本文編號(hào):2032608
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2032608.html