天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

基于BP神經(jīng)網(wǎng)絡(luò)法的巖質(zhì)邊坡穩(wěn)定性評價

發(fā)布時間:2018-06-17 07:02

  本文選題:BP神經(jīng)網(wǎng)絡(luò) + 巖質(zhì)邊坡 ; 參考:《南昌航空大學(xué)》2017年碩士論文


【摘要】:本文針對公路巖質(zhì)邊坡穩(wěn)定性問題,利用BP人工神經(jīng)網(wǎng)絡(luò)建立巖質(zhì)邊坡穩(wěn)定坡角預(yù)測模型,對穩(wěn)定邊坡角進(jìn)行預(yù)測。同時結(jié)合RMR巖體質(zhì)量分級系統(tǒng),對巖體穩(wěn)定性進(jìn)行分級評價。通過調(diào)研,收集大量已建公路邊坡工程的工程數(shù)據(jù),以其為訓(xùn)練樣本建立BP人工神經(jīng)網(wǎng)絡(luò)模型。該模型的輸入層影響因子采用RMR巖體質(zhì)量分級系統(tǒng)的參數(shù),并根據(jù)參數(shù)的評分標(biāo)準(zhǔn)來量化邊坡工程勘測數(shù)據(jù)。對于存在多組節(jié)理的巖質(zhì)邊坡,將初始參數(shù)值分別進(jìn)行算術(shù)平均調(diào)整,加權(quán)平均調(diào)整以及考慮楔形破壞加權(quán)平均調(diào)整,將調(diào)整后的參數(shù)值分別輸入到BP神經(jīng)網(wǎng)絡(luò)模型中預(yù)測穩(wěn)定邊坡角,并將預(yù)測值與已建公路的邊坡角實際值進(jìn)行對比分析。如果出現(xiàn)邊坡角預(yù)測值大于實際值的情況,那么無法直接根據(jù)對比結(jié)果判斷邊坡是否穩(wěn)定,此時利用有限元軟件對預(yù)測值進(jìn)行建模分析,驗證預(yù)測值的可靠性。本研究取得的主要研究成果如下:(1)對RMR巖體質(zhì)量分級系統(tǒng)參數(shù)值進(jìn)行考慮楔形破壞加權(quán)平均調(diào)整,得到的巖體質(zhì)量分級評價結(jié)果與已建工程實際情況最接近。(2)將BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果與已建工程實際數(shù)據(jù)對比,結(jié)果表明利用BP人工神經(jīng)網(wǎng)絡(luò)方法預(yù)測公路巖質(zhì)邊坡穩(wěn)定坡角是可行的。(3)有限元軟件分析表明,利用BP神經(jīng)網(wǎng)絡(luò)預(yù)測得到的結(jié)果均是正確的,驗證了BP神經(jīng)網(wǎng)絡(luò)預(yù)測穩(wěn)定邊坡角的可靠性。(4)對RMR巖體質(zhì)量分級系統(tǒng)參數(shù)值進(jìn)行考慮楔形破壞加權(quán)平均調(diào)整,經(jīng)過BP神經(jīng)網(wǎng)絡(luò)預(yù)測得到的穩(wěn)定邊坡角預(yù)測值與已建邊坡工程邊坡角實際值最接近。
[Abstract]:Aiming at the stability of rock slope of highway, a prediction model of stable slope angle of rock slope is established by using BP artificial neural network, and the angle of stable slope is predicted. At the same time, the stability of rock mass is evaluated by RMR classification system. Through investigation and investigation, a large number of engineering data of highway slope engineering have been collected, and BP artificial neural network model has been established with it as the training sample. The parameters of RMR rock mass quality classification system are used for the influence factors of the input layer of the model, and the slope engineering survey data are quantified according to the scoring criteria of the parameters. For rock slopes with multiple joints, the initial parameter values are adjusted respectively by arithmetic average, weighted average adjustment and weighted average adjustment considering wedge failure. The adjusted parameters are input into the BP neural network model to predict the stable slope angle, and the predicted value is compared with the actual value of the slope angle of the built highway. If the prediction value of slope angle is larger than the actual value, it is impossible to judge whether the slope is stable or not directly based on the comparison results. At this time, the finite element software is used to model and analyze the predicted value to verify the reliability of the prediction value. The main research results obtained in this study are as follows: (1) adjusting the RMR rock mass quality classification system parameters considering the wedge failure weighted average. The obtained rock mass quality grading evaluation results are closest to the actual situation of the existing projects.) the BP neural network prediction results are compared with the actual data of the existing projects. The results show that it is feasible to predict the stable slope angle of highway rock slope by BP artificial neural network method. The finite element software analysis shows that the results obtained by BP neural network prediction are all correct. The reliability of BP neural network for predicting stable slope angle is verified. The predicted value of the stable slope angle obtained by BP neural network is the closest to the actual value of the slope angle of the existing slope engineering.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U416.14

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張春玲;張傳鵬;徐靜;;巖石點荷載強(qiáng)度與單軸抗壓強(qiáng)度的對比試驗[J];地下空間與工程學(xué)報;2015年S2期

2 王凱旋;蘇永華;張盼鳳;羅正東;;基于改進(jìn)RMR方法的深部隧道穩(wěn)定性分析[J];公路交通科技;2015年05期

3 齊三紅;楊繼華;郭衛(wèi)新;婁國川;;修正RMR法在地下洞室圍巖分類中的應(yīng)用研究[J];地下空間與工程學(xué)報;2013年S2期

4 王樂華;李建榮;李建林;王孔偉;許曉亮;宛良朋;;RMR法評價體系的修正及工程應(yīng)用[J];巖石力學(xué)與工程學(xué)報;2013年S2期

5 蔣權(quán);;基于改進(jìn)RMR法及三維可視技術(shù)的巖體質(zhì)量分級分區(qū)[J];礦業(yè)工程研究;2013年02期

6 劉黎;楊學(xué)堂;;基于RMR分類方法的某電站工程邊坡巖體參數(shù)估算[J];三峽大學(xué)學(xué)報(自然科學(xué)版);2011年01期

7 賈明濤;王李管;;基于區(qū)域化變量及RMR評價體系的金川Ⅲ礦區(qū)礦巖質(zhì)量評價[J];巖土力學(xué);2010年06期

8 唐紅寧;;RMR圍巖分級方法在隧道施工現(xiàn)場的應(yīng)用[J];隧道建設(shè);2008年06期

9 陳沅江;吳超;傅衣銘;胡全舟;;基于修正RMR法的深部巖體工程圍巖質(zhì)量評價研究[J];防災(zāi)減災(zāi)工程學(xué)報;2007年02期

10 馬莎,姜彤,黃志全,李華曄;巖體變形模量偏最小二乘回歸與神經(jīng)網(wǎng)絡(luò)關(guān)聯(lián)性研究[J];巖石力學(xué)與工程學(xué)報;2004年22期

相關(guān)會議論文 前1條

1 冀東;呂三和;姜德鴻;閆強(qiáng)剛;李文光;;基于修正RMR法評價體系的濱海深部開采礦山巖體質(zhì)量評價[A];2015年全國工程地質(zhì)學(xué)術(shù)年會論文集[C];2015年

相關(guān)碩士學(xué)位論文 前2條

1 吳鑫;巖質(zhì)高邊坡巖體結(jié)構(gòu)面快速調(diào)查及穩(wěn)定性評價[D];成都理工大學(xué);2009年

2 謝石中;工程巖體質(zhì)量可視化評價及其在某礦山的應(yīng)用[D];中南大學(xué);2008年



本文編號:2030165

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2030165.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b4caa***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com