玄武巖纖維高粘瀝青及混合料性能特性研究
本文選題:玄武巖纖維 + 高粘瀝青改性劑; 參考:《浙江大學(xué)》2015年碩士論文
【摘要】:研究具有優(yōu)良路用性能的瀝青混合料,對解決南方高溫多雨地區(qū)、山嶺重丘區(qū)的長上坡路段、大型橋梁的橋面鋪裝層以及特重交通等特殊路段的瀝青路面早期病害問題,延長使用壽命,具有重要意義。在總結(jié)玄武巖纖維瀝青混合料和高粘度改性瀝青的已有研究基礎(chǔ)上,本文對玄武巖纖維和直投式高粘瀝青改性劑復(fù)合使用后瀝青及混合料的性能展開研究,并對其增強機理進行分析,獲得比單一改性方式性能更優(yōu)的高性能玄武巖纖維高粘瀝青混合料。主要研究內(nèi)容與成果如下: (1)通過DSR試驗、測力延度試驗和旋轉(zhuǎn)粘度試驗分析玄武巖纖維和高粘改性劑對瀝青粘彈特性、高低溫性能和感溫性能的影響,發(fā)現(xiàn):兩種材料明顯改變了瀝青的粘彈特性,瀝青的高低溫性能和感溫性均得到明顯改善。 (2)通過差示掃描量熱試驗(DSC)和四組分試驗分析高粘改性劑對瀝青高溫性能的改善機理,發(fā)現(xiàn)改性后高溫性能穩(wěn)定的膠質(zhì)和瀝青質(zhì)增多,在高溫時易于發(fā)生相態(tài)轉(zhuǎn)變的芳香分與飽和分減少,瀝青膠體結(jié)構(gòu)向凝膠型方向發(fā)生轉(zhuǎn)變。 (3)通過車轍試驗、不同溫度下的彎曲破壞試驗和凍融劈裂試驗評價玄武巖纖維高粘瀝青混合料的路用性能。結(jié)果表明玄武巖纖維高粘瀝青混合料具有較好的高溫穩(wěn)定性和水穩(wěn)定性,相關(guān)指標(biāo)均優(yōu)于相同級配下的玄武巖纖維SBS改性瀝青混合料,但低溫變形能力不如后者。 (4)對劈裂破壞后的混合料試樣進行環(huán)境掃描電鏡(ESEM)觀測,分析玄武纖維在瀝青混合料中的作用機理,結(jié)果表明玄武巖纖維在瀝青混合料中呈現(xiàn)縱橫交錯的網(wǎng)狀分布,這有利于發(fā)揮增強、增彈和增粘作用,并約束或延緩徽裂縫擴展。同時也發(fā)現(xiàn)玄武巖纖維在瀝青混合料中發(fā)生了拉斷破壞,說明玄武巖纖維發(fā)揮了加筋增強的作用。 (5)通過現(xiàn)場試驗段鋪筑,對玄武巖纖維高粘瀝青SMA混合料的施工工藝進行研究,確定了“直投加入、二次干拌”的拌和工藝,并提出了攤鋪與壓實過程的關(guān)鍵控制指標(biāo)。
[Abstract]:It is of great significance to study the asphalt mixture with excellent road performance and to prolong the service life of the asphalt pavement in the South high temperature and rainy areas, the long upslope section of the mountainous areas, the bridge deck pavement and the special traffic. On the basis of the research on the viscosity modified asphalt, the performance of the basalt fiber and the direct cast high viscosity asphalt modifier was studied in this paper, and its strengthening mechanism was analyzed. The high performance high performance basalt fiber high viscosity asphalt mixture was obtained better than the single modified method. The main research content and the main content were as follows. The results are as follows:
(1) the effects of basalt fiber and high viscosity modifier on the viscoelastic properties of bitumen, high and low temperature performance and temperature sensing properties were analyzed by DSR test, force ductility test and rotating viscosity test. It was found that the viscoelastic properties of the asphalt were obviously changed by the two materials, and the high and low temperature performance and the temperature sensitivity of asphalt were obviously improved.
(2) through the differential scanning calorimetry (DSC) and four component test, the improvement mechanism of high viscosity modifier on high temperature performance of asphalt was analyzed. It was found that the stable resin and asphaltene were increased at high temperature after the modification, and the aromatic and saturation points of phase transition were reduced at high temperature, and the structure of asphalt colloid changed to the gel direction.
(3) through the rutting test, the bending failure test at different temperatures and the freeze-thaw splitting test to evaluate the pavement performance of the high viscosity asphalt mixture of basalt fiber. The results show that the high viscosity asphalt mixture with high viscosity of basalt fiber has good high temperature stability and water stability, and the related indexes are better than the SBS modified leachate of basalt fiber under the same grading. Green mixture, but the low temperature deformability is not as good as the latter.
(4) the samples of the mixture after splitting and breaking are observed by environmental scanning electron microscope (ESEM), and the mechanism of the basalt fiber in the asphalt mixture is analyzed. The results show that the basalt fiber in the asphalt mixture presents a crisscross network distribution, which is beneficial to the enhancement, the increase of the elasticity and the adhesion, and the restraint or delay of the expansion of the emblem crack. It was also found that the basalt fiber had broken fracture in the asphalt mixture, which indicated that the basalt fiber played the role of reinforcement and reinforcement.
(5) through the construction of field test section, the construction technology of high viscosity asphalt SMA mixture of basalt fiber was studied, and the mixing process of "direct joining and two dry mixing" was determined, and the key control indexes of paving and compaction were put forward.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U414
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范文孝;康海貴;鄭元勛;;玄武巖纖維改性瀝青混合料路用性能試驗研究(英文)[J];Journal of Southeast University(English Edition);2010年04期
2 舒翔;邱志雄;張國炳;;礦物纖維改性瀝青在粵贛高速公路路面上的應(yīng)用[J];公路;2006年04期
3 劉新權(quán);丁慶軍;姚永永;胡曙光;;高粘度改性瀝青配制鋼箱梁橋面SMA鋪裝層的研究[J];公路;2007年09期
4 湯寄予;高丹盈;韓菊紅;;玄武巖纖維對瀝青混合料水穩(wěn)定性影響的研究[J];公路;2008年01期
5 武賢慧,張登良;纖維增強瀝青混凝土低溫性能研究[J];公路交通科技;2005年02期
6 吳少鵬;葉群山;劉至飛;;礦物纖維改善瀝青混合料高溫穩(wěn)定性研究[J];公路交通科技;2008年11期
7 盧輝;張肖寧;胡玲玲;;礦物纖維瀝青混合料在長陡坡路段的應(yīng)用[J];中外公路;2007年03期
8 郝孟輝;郝培文;楊黔;楊凱;;玄武巖短切纖維改性瀝青混合料路用性能分析[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2011年01期
9 孫璐;辛憲濤;王鴻遙;顧文鈞;;多維數(shù)多尺度納米材料改性瀝青的微觀機理[J];硅酸鹽學(xué)報;2012年10期
10 陳華鑫;賀孟霜;李媛媛;顏赫;;瀝青與瀝青組分的差示掃描量熱研究[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2013年02期
,本文編號:2014621
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2014621.html