鋼桁架橋的列車(chē)—橋梁耦合振動(dòng)研究
本文選題:車(chē)橋耦合振動(dòng) + 動(dòng)力響應(yīng) ; 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:近幾十年來(lái),隨著科學(xué)技術(shù)水平的不斷提高,人類(lèi)社會(huì)快速發(fā)展,高速鐵路系統(tǒng)得到迅猛發(fā)展,鐵路線路中的橋梁數(shù)量隨之增多,車(chē)輛的安全運(yùn)行與橋梁的合理設(shè)計(jì)逐漸受到重視。當(dāng)車(chē)輛以一定的速度駛過(guò)橋梁時(shí),會(huì)引起橋梁結(jié)構(gòu)的振動(dòng),反之,橋梁的振動(dòng)作用于車(chē)輛,又會(huì)影響車(chē)輛的振動(dòng),這樣,橋梁與橋上車(chē)輛便構(gòu)成了一個(gè)相互作用的系統(tǒng),研究這個(gè)系統(tǒng)對(duì)車(chē)、橋的安全性是有必要的。本文分別通過(guò)理論研究、縮尺模型試驗(yàn)和數(shù)值模型分析,對(duì)車(chē)橋耦合振動(dòng)系統(tǒng),但主要對(duì)橋梁子系統(tǒng)做了如下一些研究。(1)在做出一些假設(shè)的條件下,建立了 42自由度的列車(chē)空間多剛體動(dòng)力學(xué)模型和橋梁的有限元模型,通過(guò)線性蠕滑理論和Hertz線性化理論建立了輪軌接觸模型,使用Newmark-β法進(jìn)行計(jì)算求解,通過(guò)其解的討論,得出通過(guò)減小時(shí)間步長(zhǎng)的方法使其解收斂的方法;(2)以德龍煙線線路德州至大家洼段鐵路中一座64m單線鐵路鋼桁架橋?yàn)樵?自制1:48橋梁縮尺模型,用試驗(yàn)的方法測(cè)量了橋梁的彈性模量和固有自振頻率。通過(guò)橋梁的動(dòng)力試驗(yàn),控制列車(chē)模型過(guò)橋的速度,采集橋梁位移與加速度數(shù)據(jù),初步得出橋梁的動(dòng)力響應(yīng)隨車(chē)輛過(guò)橋速度的增快而增大的結(jié)果;(3)使用有限元ANSYS軟件對(duì)上述橋梁建立有限元模型,首先與相應(yīng)的試驗(yàn)數(shù)據(jù)做比對(duì),得到合理的有限元模型,之后用此模型做一些參數(shù)分析,發(fā)現(xiàn)橋梁動(dòng)力響應(yīng)并非完全隨車(chē)速的增快而增大,并分析了其原因。接著進(jìn)行了參數(shù)分析,并得到以下結(jié)論:在一定范圍內(nèi),橋梁動(dòng)力響應(yīng)隨彈性模量的增大而減小,超出此范圍時(shí),橋梁動(dòng)力響應(yīng)受彈性模量的影響甚微;阻尼比越大,橋梁的動(dòng)力響應(yīng)值越小,但阻尼比對(duì)橋梁動(dòng)力響應(yīng)影響程度較小;在彈性變形范圍內(nèi),橋梁動(dòng)力響應(yīng)與列車(chē)荷載呈線性增長(zhǎng)趨勢(shì);當(dāng)列車(chē)總長(zhǎng)度小于橋梁跨度時(shí),橋梁動(dòng)力響應(yīng)隨列車(chē)車(chē)廂數(shù)量的增加而增大,當(dāng)列車(chē)總長(zhǎng)度大于橋梁跨度時(shí),橋梁動(dòng)力響應(yīng)增量將趨于平緩。(4)根據(jù)參數(shù)分析得出的結(jié)論,針對(duì)這些參數(shù),提出了一些列車(chē)安全行駛和保證橋梁結(jié)構(gòu)安全的措施,例如:合理選用鋼材,防止列車(chē)超載,設(shè)置阻尼器等方法,對(duì)橋梁實(shí)際工程與設(shè)計(jì)具有一定參考價(jià)值。
[Abstract]:In recent decades, with the development of science and technology, the rapid development of human society, the rapid development of high-speed railway system, the number of bridges in railway lines has increased. The safe operation of vehicles and the reasonable design of bridges have been paid more and more attention. When a vehicle passes a bridge at a certain speed, it will cause the vibration of the bridge structure. On the contrary, the vibration of the bridge acts on the vehicle, which will affect the vibration of the vehicle. In this way, the bridge and the vehicle on the bridge will form an interactive system. It is necessary to study the safety of this system for vehicles and bridges. In this paper, through theoretical research, scale model test and numerical model analysis, the vehicle-bridge coupling vibration system is studied respectively, but the bridge subsystem is mainly studied as follows. 1) under some hypothetical conditions, A 42-DOF multi-rigid body dynamics model in train space and a finite element model of bridge are established. The wheel-rail contact model is established by linear creep theory and Hertz linearization theory, and is solved by Newmark- 尾 method. It is concluded that the solution converges by reducing the time step size.) taking a 64m single-track railway steel truss bridge in the Dezhou to Dajiawa railway line as the prototype, the 1:48 bridge scale model is made. The elastic modulus and natural vibration frequency of the bridge are measured by means of experiments. Through the dynamic test of the bridge, the speed of the train model crossing the bridge is controlled, and the displacement and acceleration data of the bridge are collected. The results show that the dynamic response of the bridge increases with the increase of the speed of the vehicle crossing the bridge. The finite element model of the bridge is established by using the finite element ANSYS software. At first, a reasonable finite element model is obtained by comparing with the corresponding experimental data. By using this model, it is found that the dynamic response of the bridge does not increase completely with the increase of speed, and the reasons are analyzed. Then the parameter analysis is carried out, and the following conclusions are obtained: in a certain range, the dynamic response of the bridge decreases with the increase of the elastic modulus, beyond which the dynamic response of the bridge is little affected by the elastic modulus, and the damping ratio is larger. The smaller the dynamic response of the bridge is, the smaller the influence of the damping ratio on the dynamic response of the bridge is. In the elastic deformation range, the dynamic response of the bridge and the train load are linearly increasing; when the total length of the train is less than the span of the bridge, The dynamic response of the bridge increases with the increase of the number of train compartments. When the total length of the train is larger than the span of the bridge, the increment of the dynamic response of the bridge will tend to be flat. Some measures for safe running of trains and safety of bridge structures are put forward, such as reasonable selection of steel, prevention of train overload, installation of dampers and so on, which have certain reference value for practical engineering and design of bridges.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U441.3;U211.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李慧樂(lè);夏禾;張楠;杜憲亭;;基于車(chē)橋耦合動(dòng)力分析的橋梁動(dòng)應(yīng)力計(jì)算方法[J];中國(guó)鐵道科學(xué);2015年01期
2 姜麗梅;江阿蘭;;基于ANSYS對(duì)鋼桁梁橋的靜動(dòng)力分析[J];低溫建筑技術(shù);2013年01期
3 雷曉燕;張斌;劉慶杰;;列車(chē)-軌道系統(tǒng)豎向動(dòng)力分析的車(chē)輛軌道單元模型[J];振動(dòng)與沖擊;2010年03期
4 李小珍;張黎明;張潔;;公路橋梁與車(chē)輛耦合振動(dòng)研究現(xiàn)狀與發(fā)展趨勢(shì)[J];工程力學(xué);2008年03期
5 黨立俊;蘇木標(biāo);李強(qiáng);;高速鐵路預(yù)應(yīng)力簡(jiǎn)支箱梁橋動(dòng)力響應(yīng)分析[J];石家莊鐵道學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年04期
6 任偉新;彭雪林;;青洲斜拉橋的基準(zhǔn)動(dòng)力有限元模型[J];計(jì)算力學(xué)學(xué)報(bào);2007年05期
7 吳定俊;李奇;陳艾榮;;車(chē)橋耦合振動(dòng)迭代求解數(shù)值穩(wěn)定性問(wèn)題[J];力學(xué)季刊;2007年03期
8 李永志;;橋梁結(jié)構(gòu)縮尺模型的設(shè)計(jì)制作與試驗(yàn)[J];建材技術(shù)與應(yīng)用;2007年06期
9 李忠獻(xiàn);黃健;張國(guó)忱;;考慮土-結(jié)構(gòu)相互作用的車(chē)橋系統(tǒng)耦合振動(dòng)分析[J];天津大學(xué)學(xué)報(bào);2005年12期
10 王少欽,岳祖潤(rùn),馬殠;車(chē)輛對(duì)橋梁動(dòng)力作用簡(jiǎn)化方法的研究[J];石家莊鐵道學(xué)院學(xué)報(bào);2005年03期
相關(guān)碩士學(xué)位論文 前4條
1 周永早;車(chē)—線—橋耦合振動(dòng)系統(tǒng)有限元數(shù)值分析[D];中南大學(xué);2012年
2 任永明;公路橋梁車(chē)橋耦合振動(dòng)模型試驗(yàn)研究[D];華東交通大學(xué);2011年
3 林鴻m8;高速鐵路車(chē)橋耦合及其應(yīng)用的研究[D];天津大學(xué);2008年
4 薛軍平;車(chē)橋耦合振動(dòng)模型方程的建立及動(dòng)力響應(yīng)分析[D];天津大學(xué);2008年
,本文編號(hào):1974755
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1974755.html