懸索橋隧道式錨碇結(jié)構(gòu)位移檢測方法研究
本文選題:懸索橋 + 錨碇結(jié)構(gòu)。 參考:《重慶交通大學(xué)》2015年碩士論文
【摘要】:懸索橋是最常見的特大型橋梁,錨碇結(jié)構(gòu)是懸索橋最重要的受力結(jié)構(gòu),其總體穩(wěn)定性和受力狀態(tài)直接影響懸索橋的安全和正常使用。錨碇的蠕變和位移是其受力狀況的直觀反應(yīng),因此,通過對(duì)錨碇結(jié)構(gòu)進(jìn)行蠕變和位移監(jiān)測從而掌握其狀態(tài)變化具有重要意義。三峽庫區(qū)蓄水后,其周邊的懸索橋隧道式錨室(錨洞)出現(xiàn)嚴(yán)重的開裂與偏位、錨固區(qū)滲水、錨頭與散索鞍銹蝕等病害,為確保懸索橋處于安全狀態(tài),須對(duì)錨碇結(jié)構(gòu)位移進(jìn)行實(shí)時(shí)監(jiān)測。然而,基于隧道式錨碇對(duì)地質(zhì)的特殊要求,實(shí)際工程應(yīng)用較少,所以目前未見對(duì)隧道式錨碇結(jié)構(gòu)蠕動(dòng)位移檢測方法的研究文獻(xiàn)。本文通過對(duì)國內(nèi)外微位移測量方法、隧道式錨碇應(yīng)用、圍巖穩(wěn)定性等相關(guān)技術(shù)進(jìn)行研究,提出兩套錨碇結(jié)構(gòu)位移檢測的裝置及方法,研究了兩裝置的組成,提出了測量的步驟和方法。通過搭建模擬實(shí)驗(yàn)平臺(tái),分別測試兩套系統(tǒng)的精度、可靠性、穩(wěn)定性。以忠縣長江大橋和豐都長江大橋?yàn)橐劳?設(shè)計(jì)實(shí)施了其中一套系統(tǒng)。具體的主要研究內(nèi)容如下:(1)設(shè)計(jì)了基于激光圖像分析的錨碇結(jié)構(gòu)位移檢測系統(tǒng),介紹了系統(tǒng)組成和測量原理,在此基礎(chǔ)上提出系統(tǒng)實(shí)現(xiàn)方案,并對(duì)涉及的相關(guān)技術(shù)進(jìn)行詳細(xì)的理論分析。(2)設(shè)計(jì)了基于位移差值放大的錨碇結(jié)構(gòu)位移檢測系統(tǒng),介紹了系統(tǒng)的組成,包括基本思想和檢測裝置的結(jié)構(gòu),基于對(duì)系統(tǒng)誤差的修正提出改進(jìn)方案,分析了改進(jìn)方案的測量原理和特點(diǎn)。(3)通過搭建模擬試驗(yàn)平臺(tái)對(duì)兩套系統(tǒng)分別設(shè)計(jì)并實(shí)施了一系列測試實(shí)驗(yàn),分別介紹了測試目的、條件及設(shè)備、過程,對(duì)每個(gè)系統(tǒng)進(jìn)行實(shí)驗(yàn)論證并得出有效結(jié)論,進(jìn)而對(duì)比分析兩套系統(tǒng)的性能。(4)將基于激光圖像分析的錨碇結(jié)構(gòu)位移檢測系統(tǒng)在忠縣和豐都兩座懸索橋上進(jìn)行工程實(shí)施。針對(duì)實(shí)際應(yīng)用提出改進(jìn)方案,對(duì)監(jiān)測數(shù)據(jù)進(jìn)行有效分析,驗(yàn)證本系統(tǒng)的使用性能。實(shí)驗(yàn)測試表明兩套系統(tǒng)都能對(duì)微小位移量進(jìn)行可靠測量,當(dāng)測量范圍在-20mm—20mm時(shí),基于激光圖像分析的錨碇結(jié)構(gòu)位移檢測系統(tǒng)的相對(duì)誤差可控制在10%以內(nèi);當(dāng)基于位移差值放大的錨碇結(jié)構(gòu)位移檢測系統(tǒng)所選管內(nèi)徑比例為1:5時(shí),測量精度可達(dá)0.1mm,且精度級(jí)數(shù)隨著管內(nèi)徑比例增大而增高。通過分析基于激光圖像分析的錨碇結(jié)構(gòu)位移檢測系統(tǒng)的工程監(jiān)測數(shù)據(jù),驗(yàn)證了本技術(shù)能對(duì)錨碇結(jié)構(gòu)位移進(jìn)行長期監(jiān)測,且位移精度可達(dá)0.1mm,并可得出錨固區(qū)的蠕動(dòng)頻率、幅度、長期走勢等狀態(tài)數(shù)據(jù)。
[Abstract]:Suspension bridge is the most common super large bridge, Anchorage structure is the most important force structure of suspension bridge, its overall stability and stress state directly affect the safety and normal use of suspension bridge. The creep and displacement of Anchorage are the direct response of its stress, so it is of great significance to monitor the creep and displacement of Anchorage structure so as to master the state change of Anchorage. After the storage of water in the three Gorges Reservoir area, serious cracks and deviations occur in the tunnel anchoring chambers (anchors) of the suspension bridges around the three Gorges Reservoir area. In order to ensure that the suspension bridges are in a safe state, the water seepage in the anchoring area, the corrosion of the anchor heads and the saddle of the loose cables, etc. The displacement of Anchorage structure should be monitored in real time. However, due to the special geological requirements of tunnel Anchorage, there are few practical engineering applications, so there is no literature on the detection of creep displacement of tunnel Anchorage structure. Based on the research on the measurement methods of micro-displacement at home and abroad, the application of tunnel Anchorage, and the stability of surrounding rock, two sets of devices and methods for measuring displacement of Anchorage structure are put forward, and the composition of the two devices is studied. The steps and methods of measurement are presented. The accuracy, reliability and stability of the two systems were tested by building a simulation experiment platform. Based on Zhongxian Yangtze River Bridge and Fengdu Yangtze River Bridge, one of the systems is designed and implemented. The main research contents are as follows: (1) the displacement detection system of Anchorage structure based on laser image analysis is designed, and the system composition and measurement principle are introduced. A displacement detection system of Anchorage structure based on the amplification of displacement difference is designed, and the composition of the system is introduced, including the basic idea and the structure of the detecting device. Based on the correction of system error, an improved scheme is put forward, and the measuring principle and characteristics of the improved scheme are analyzed. A series of test experiments are designed and implemented for the two systems respectively by building a simulation test platform, and the purpose of the test is introduced respectively. The conditions and equipment, the process, the experimental demonstration of each system and the effective conclusion, The displacement detection system of Anchorage structure based on laser image analysis is carried out in Zhongxian and Fengdu suspension bridges. According to the practical application, the improvement scheme is put forward, the monitoring data is analyzed effectively, and the performance of the system is verified. The experimental results show that both of the two systems can reliably measure the micro-displacement. When the measurement range is -20mm-20mm, the relative error of the displacement detection system of Anchorage structure based on laser image analysis can be controlled within 10%. When the ratio of inner diameter of pipe selected by displacement detection system based on displacement difference amplification is 1:5, the measurement accuracy can reach 0.1 mm, and the accuracy series increase with the increase of pipe diameter ratio. By analyzing the engineering monitoring data of displacement detection system of Anchorage structure based on laser image analysis, it is verified that this technique can be used to monitor the displacement of Anchorage structure for a long time, and the displacement accuracy can reach 0.1 mm, and the creep frequency and amplitude of anchoring area can be obtained. Long-term trend and other state data.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U446;U448.25;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 肖本職;吳相超;;隧道式錨碇圍巖穩(wěn)定性研究現(xiàn)狀及探討[J];地下空間與工程學(xué)報(bào);2006年03期
2 董志宏,張奇華,丁秀麗,張利潔;矮寨懸索橋隧道錨碇穩(wěn)定性數(shù)值分析[J];長江科學(xué)院院報(bào);2005年06期
3 林碧華,馬曉軒;虎門大橋橋塔地基基礎(chǔ)類型及錨碇區(qū)穩(wěn)定性分析[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);1997年02期
4 陳彰貴,羅建彬;重慶長江鵝公巖大橋東錨碇隧道錨工程的質(zhì)量控制[J];公路交通技術(shù);2003年03期
5 黃達(dá);黃潤秋;張永興;;三峽工程地下廠房圍巖塊體變形特征及穩(wěn)定性分析[J];水文地質(zhì)工程地質(zhì);2009年05期
6 馮玉國;灰色優(yōu)化理論模型在地下工程圍巖穩(wěn)定性分類中的應(yīng)用[J];巖土工程學(xué)報(bào);1996年03期
7 ;Similarity model tests of movement and deformation of coal-rock mass below stopes[J];Mining Science and Technology;2010年02期
8 李小昌;袁振霞;張志增;;塊體理論及Unwedge程序在地下洞室穩(wěn)定性分析中的應(yīng)用[J];中原工學(xué)院學(xué)報(bào);2014年03期
相關(guān)碩士學(xué)位論文 前1條
1 蔡軻;微加工技術(shù)在高精度位移傳感器中的應(yīng)用[D];安徽大學(xué);2014年
,本文編號(hào):1942964
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1942964.html