沉管隧道工程關(guān)鍵技術(shù)研究與分析
本文選題:沉管隧道 + 施工技術(shù); 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)經(jīng)濟(jì)和城市及城際交通的快速發(fā)展,對(duì)穿越江河流域、海灣區(qū)域的交通和運(yùn)輸系統(tǒng)的設(shè)計(jì)、施工提出了新的要求。目前,世界各國(guó)一大批跨河口、跨海灣的重大通道工程紛紛醞釀采用沉管隧道的方式,歐美及日本已經(jīng)有不少成功應(yīng)用沉管隧道的實(shí)例,我國(guó)上海、廣州和寧波等地區(qū)也修建了沉管隧道。雖然沉管隧道在我國(guó)發(fā)展迅速,但是國(guó)內(nèi)沉管隧道起步較晚,許多技術(shù)與國(guó)外相比尚未成熟,而建設(shè)沉管隧道工程是龐大、復(fù)雜、艱巨的任務(wù),涉及到多學(xué)科領(lǐng)域,許多關(guān)鍵技術(shù)尚未完善,因此必須在沉管隧道工程建設(shè)過(guò)程中,不斷總結(jié)、積累建設(shè)經(jīng)驗(yàn)。國(guó)內(nèi)某沉管隧道修建在內(nèi)河中上游的沉管隧道,也是公路與地鐵合建沉管隧道。因特殊的地理環(huán)境和施工條件,該隧道建設(shè)過(guò)程中所采用的技術(shù)與國(guó)內(nèi)已修建的沉管隧道較為不同。本文在查閱大量國(guó)內(nèi)外沉管隧道文獻(xiàn)和工程研究成果的基礎(chǔ)上,以該沉管隧道為研究對(duì)象,對(duì)其沉管隧道工程施工過(guò)程中關(guān)鍵技術(shù)進(jìn)行分析研究。本文主要工作內(nèi)容和結(jié)論如下:1)研究國(guó)內(nèi)外沉管隧道的發(fā)展?fàn)顩r,根據(jù)發(fā)展?fàn)顩r總結(jié)沉管隧道的優(yōu)缺點(diǎn);2)根據(jù)國(guó)內(nèi)外已建或在建的沉管隧道工程,對(duì)沉管隧道工程的關(guān)鍵工序進(jìn)行研究,總結(jié)關(guān)鍵施工序所采用的施工工藝,提出各施工工藝的優(yōu)缺點(diǎn),為以后修建沉管隧道工程提出參考;3)分析研究國(guó)內(nèi)某沉管隧道工程的干塢、管段預(yù)制、基槽開挖、管段浮運(yùn)沉放、管段基礎(chǔ)處理等工序的關(guān)鍵施工技術(shù),研究施工過(guò)程中的重難點(diǎn),并提出應(yīng)對(duì)措施;4)針對(duì)管段起浮階段的浮態(tài)和穩(wěn)態(tài)進(jìn)行研究分析,結(jié)果表明管段的壓載水位布置對(duì)管段的重心偏移有一定影響但影響較小,壓載水位應(yīng)盡量對(duì)稱布置、對(duì)稱抽水,管段起浮后應(yīng)盡量選擇較大的干舷值,保證管段的定傾高度較高,同時(shí)在設(shè)計(jì)和施工中采取保護(hù)措施保證管段的初穩(wěn)性最好;5)對(duì)管段在荷載作用下的管段應(yīng)力、位移進(jìn)行計(jì)算分析,結(jié)果表明在中隔墻與頂板交接處產(chǎn)生較大的拉應(yīng)力,應(yīng)在受拉區(qū)配置適當(dāng)強(qiáng)度的鋼筋,滿足抗拉和抗彎要求。側(cè)墻與管頂板交接區(qū)域產(chǎn)生較大的壓應(yīng)力,應(yīng)在受壓區(qū)域增大配筋量。本工程管段屬于非對(duì)稱結(jié)構(gòu),應(yīng)力起到控制作用的是管段的對(duì)稱部分市政廊道。但不對(duì)稱部分會(huì)導(dǎo)致管段的兩邊的不均勻變形比較明顯,因此應(yīng)采取措施盡量消除該不利影響。本文所進(jìn)行的研究分析可為以后沉管隧道工程提供參考,具有理論和實(shí)際意義。
[Abstract]:With the rapid development of economy, city and intercity traffic in China, new requirements are put forward for the design and construction of traffic and transportation system across river basins and gulf regions. At present, a large number of major tunnel projects across estuaries and bays in various countries in the world are planning to adopt the method of immersed tube tunnels. There have been many examples of successful application of immersed tunnels in Europe, America and Japan. Shanghai, China, Sinking tunnels have also been built in areas such as Guangzhou and Ningbo. Although the immersed tunnel is developing rapidly in our country, the domestic tunnel starts relatively late, many technologies are not mature compared with foreign countries, and the construction of immersed tunnel project is a huge, complex and arduous task, which involves many disciplines. Many key technologies have not been perfected, so it is necessary to sum up and accumulate construction experience in the construction of immersed tunnel. A sinking tunnel built in the upper reaches of inland river is also a tunnel built by highway and subway. Due to the special geographical environment and construction conditions, the technology used in the construction of the tunnel is different from that used in the domestic tunnel. On the basis of consulting a large number of documents and engineering research results of immersed tunnel at home and abroad, this paper analyzes and studies the key technology in the construction process of the immersed tunnel with this tunnel as the research object. The main contents and conclusions of this paper are as follows: (1) to study the development of immersed tunnels at home and abroad, and to summarize the advantages and disadvantages of immersed tunnels according to the development situation. This paper studies the key processes of the immersed tunnel engineering, summarizes the construction technology used in the key construction sequence, and puts forward the advantages and disadvantages of each construction technology. The key construction technology of dry dock, pipe section prefabrication, foundation groove excavation, pipe section floating and sinking, pipe section foundation treatment and so on are analyzed and studied for the future construction of immersed tube tunnel engineering, such as dry dock, pipe section prefabrication, foundation excavation, pipe section floating and sinking, pipe section foundation treatment and so on. This paper studies the heavy and difficult points in the construction process, and puts forward some measures to deal with the floating state and steady state in the floating stage of the pipe segment. The results show that the ballast water level arrangement of the pipe section has a certain influence on the barycenter shift of the pipe section, but the influence is relatively small. Ballast water level should be arranged symmetrically as far as possible, and symmetrical pumping should be carried out, and the larger freeboard value should be chosen after the pipe section floats, so as to ensure that the fixed tilting height of the pipe section is relatively high. At the same time, protective measures are taken in design and construction to ensure the best initial stability of the pipe section. (5) the stress and displacement of the pipe section under load are calculated and analyzed. The results show that there is a large tensile stress at the junction between the middle partition wall and the roof. Steel bars of appropriate strength shall be provided in the tensile area to meet the tensile and bending requirements. The large compressive stress is produced in the interface area between the side wall and the pipe roof, so the reinforcement should be increased in the compression area. The pipe section of the project belongs to asymmetric structure, and the stress is controlled by the symmetrical part of the municipal corridor of the pipe section. However, the asymmetric part will lead to the obvious uneven deformation on both sides of the pipe section, therefore, measures should be taken to eliminate the adverse effects as far as possible. The research and analysis in this paper can provide a reference for the future tunnel engineering, which is of theoretical and practical significance.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U455
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳東;;港珠澳大橋沉管隧道深基槽開挖典型施工分析[J];山東工業(yè)技術(shù);2016年22期
2 韓建坤;;內(nèi)河中游沉管隧道管節(jié)浮運(yùn)沉放水文窗口選擇研究[J];隧道建設(shè);2016年09期
3 胡勇前;趙鵬輝;陳衡;林亞星;;不對(duì)稱截面沉管隧道三維結(jié)構(gòu)分析[J];西華大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期
4 張兵文;張文揚(yáng);吳暖;張晉;;預(yù)裂爆破與氣泡帷幕技術(shù)在水下爆破中的應(yīng)用[J];工程爆破;2015年05期
5 鄧建林;;沈家門港海底沉管隧道浮運(yùn)、沉放施工控制技術(shù)[J];隧道建設(shè);2015年09期
6 翟世鴻;吳海波;楊秀禮;;沉管工廠化預(yù)制技術(shù)在港珠澳大橋工程中的應(yīng)用[J];水運(yùn)工程;2015年08期
7 魏綱;朱昕光;蘇勤衛(wèi);;沉管隧道豎向不均勻沉降的計(jì)算方法及分布研究[J];現(xiàn)代隧道技術(shù);2013年06期
8 林建軍;奚笑舟;孫斌;;沉管隧道管段在起浮過(guò)程中的浮態(tài)及穩(wěn)性分析[J];地下空間與工程學(xué)報(bào);2013年S1期
9 熊剛;王艷寧;;干塢在大型沉管隧道工程中的應(yīng)用[J];城市道橋與防洪;2013年08期
10 魏綱;裘慧杰;魏新江;;沉管隧道施工期間與工后長(zhǎng)期沉降的數(shù)據(jù)分析[J];巖石力學(xué)與工程學(xué)報(bào);2013年S2期
,本文編號(hào):1931770
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1931770.html