盾構(gòu)無障礙始發(fā)與接收施工力學(xué)行為及施工工藝
本文選題:盾構(gòu)無障礙始發(fā)與接收 + 端頭土體穩(wěn)定性; 參考:《北京建筑大學(xué)》2017年碩士論文
【摘要】:盾構(gòu)法施工分為盾構(gòu)始發(fā)、盾構(gòu)掘進(jìn)、盾構(gòu)接收這三個(gè)階段。其中,盾構(gòu)始發(fā)與接收普遍存在土體坍塌、涌水涌砂、地下管線破裂等工程事故,安全問題較為突出。針對(duì)常規(guī)的盾構(gòu)始發(fā)與接收工程事故頻發(fā)的安全現(xiàn)狀,本文在已有相關(guān)研究成果的基礎(chǔ)上,采用理論分析、數(shù)值分析、現(xiàn)場(chǎng)試驗(yàn)等方法,進(jìn)行了盾構(gòu)無障礙始發(fā)與接收端頭土體穩(wěn)定性、施工力學(xué)行為、施工工藝等方面研究,獲得如下成果:1.采用理論分析的方法,建立了盾構(gòu)無障礙始發(fā)與接收端頭土體的穩(wěn)定性模型,提出了判定洞口處土體穩(wěn)定性的數(shù)學(xué)模型表達(dá)式,研究結(jié)果表明:(1)洞口處玻璃纖維筋混凝土圍護(hù)結(jié)構(gòu)應(yīng)同時(shí)滿足背后水、土壓力對(duì)其產(chǎn)生的抗彎、抗剪承載力要求。(2)認(rèn)為在盾構(gòu)無障礙始發(fā)與接收時(shí)端頭土體不存在滑移失穩(wěn)破壞現(xiàn)象,建議可取消端頭土體加固。2.采用Flac3D數(shù)值分析的方法,以玻璃纖維筋混凝土圍護(hù)樁體、洞口開挖面土體、地表沉降為研究對(duì)象,進(jìn)行了盾構(gòu)無障礙始發(fā)與接收宏觀角度的施工力學(xué)行為研究,研究結(jié)果表明:(1)無障礙始發(fā)切樁過程中,當(dāng)樁體切削至一半之后水平位移增幅會(huì)達(dá)到125.71%,應(yīng)控制盾構(gòu)推力,防止因樁后土體被動(dòng)土壓力導(dǎo)致過大的地表隆起。(2)無障礙始發(fā)時(shí)樁體水平位移及最大主應(yīng)力均在允許值范圍內(nèi),樁后土體穩(wěn)定,地表隆起極小。(3)無障礙接收時(shí),盾構(gòu)在距洞口1倍洞徑+(2~3)環(huán)管片時(shí)進(jìn)入有限土體。之后,土倉壓力隨有限土壓力協(xié)調(diào)變化,從而同時(shí)滿足圍護(hù)樁體與地表的變形要求。3.采用PFC3D數(shù)值分析的方法,進(jìn)行了微觀角度的盾構(gòu)切樁過程及切樁機(jī)理的研究,研究結(jié)果表明:(1)盾構(gòu)切樁過程中玻璃纖維筋混凝土開裂是一個(gè)裂縫產(chǎn)生、裂縫擴(kuò)展與裂縫聚結(jié)的過程;樁體應(yīng)力與切刀切削力均表現(xiàn)出先逐漸增大,后逐漸減小,最后趨于穩(wěn)定的變化規(guī)律。(2)切樁過程中,應(yīng)避免過大的盾構(gòu)推力導(dǎo)致的圍護(hù)樁體朝向基坑臨空側(cè)整體倒塌這一工程事故的發(fā)生。(3)就盾構(gòu)無障礙始發(fā)而言,盾構(gòu)切樁機(jī)理為全過程的剪壓破壞;就盾構(gòu)無障礙接收而言,盾構(gòu)切樁機(jī)理為先剪壓破壞,后剪切破壞的“兩階段模型”。4.以北京地鐵16號(hào)線某盾構(gòu)工程為背景,采用現(xiàn)場(chǎng)試驗(yàn)的方法,進(jìn)行了盾構(gòu)無障礙始發(fā)與接收施工工藝的現(xiàn)場(chǎng)實(shí)施研究,研究結(jié)果表明:(1)盾構(gòu)無障礙始發(fā)分為刀盤密貼圍護(hù)結(jié)構(gòu)、切削圍護(hù)結(jié)構(gòu)、土倉壓力建立并達(dá)到平衡穩(wěn)定三個(gè)階段;盾構(gòu)無障礙接收分為進(jìn)入有限土體、刀盤接近并密貼圍護(hù)結(jié)構(gòu)、切削圍護(hù)結(jié)構(gòu)三個(gè)階段。(2)盾構(gòu)無障礙始發(fā)有利于土倉壓力與土壓平衡的快速建立。(3)盾構(gòu)無障礙接收有效提高了工程安全性和工程效率;切樁時(shí)應(yīng)控制盾構(gòu)貫入度在6mm左右。
[Abstract]:Shield construction is divided into three stages: starting of shield, tunneling of shield and receiving of shield. There are many engineering accidents, such as soil collapse, water gushing and sand gushing, underground pipeline rupture and so on. In view of the current situation of frequent accidents occurring in the conventional shield tunneling and receiving engineering, this paper adopts the methods of theoretical analysis, numerical analysis, field test and so on, on the basis of the related research results. The soil stability, construction mechanics behavior and construction technology of shield tunneling are studied in this paper. The results are as follows: 1. By using the method of theoretical analysis, the stability model of the soil mass at the beginning and receiving end of shield tunneling is established, and the mathematical model expression for judging the stability of soil at the hole is put forward. The results show that the concrete retaining structure of glass fiber reinforced concrete at the opening of the tunnel should satisfy the back water at the same time, and the earth pressure can resist the bending of the structure. The shear-bearing capacity requires that there is no slippage failure in the end soil mass when the shield machine starts and receives without obstacles, and it is suggested that the reinforcement of the end soil mass should be cancelled. Using Flac3D numerical analysis method, taking glass fiber reinforced concrete enclosing pile body, excavation surface soil and ground subsidence as the research object, the construction mechanics behavior of shield tunneling from the angle of unobstructed origin and receiving macroscopical angle is studied. The results show that the horizontal displacement increases to 125.71 when the pile body is cut to half in the process of unobstructed initial pile cutting, so the thrust of shield machine should be controlled. When the horizontal displacement and the maximum principal stress of the pile are within the allowable range, the soil behind the pile is stable, and the surface uplift is very small. The shield machine enters the finite soil when the annular pipe is 1 times the diameter of the hole. After that, the pressure of soil bunker changes harmoniously with the finite earth pressure, which satisfies the deformation requirement of retaining pile and surface simultaneously. In this paper, PFC3D numerical analysis method is used to study the process of cutting pile and the mechanism of shearing pile. The results show that the cracking of glass fiber reinforced concrete is a crack in the process of shearing pile. In the process of pile cutting, the stress of pile body and the cutting force of cutting tool increase gradually, then decrease gradually, and finally tend to change steadily. It is necessary to avoid the occurrence of the engineering accident that the shield pile body collapses towards the empty side of the foundation pit caused by excessive shield thrust.) in the case of shield tunneling, the mechanism of shearing pile cutting is the shear compression failure of the whole process; in the case of shield machine receiving without obstacles, the mechanism of shield cutting pile is the shear compression failure of the whole process, and the mechanism of shield cutting pile is the whole process of shear compression failure. The mechanism of shield cutting pile is the "two-stage model" of first shear compression failure and later shear failure. Based on a shield tunneling project of Beijing Metro Line 16, a field implementation study on the starting and receiving construction technology of shield tunneling is carried out by using the method of field test. The results show that the barrier free construction of the shield machine is divided into two parts: the cutlery close enclosing structure. Cutting enclosure structure, earth chamber pressure establishment and achieving balance and stability, shield machine without obstacles received into a limited soil, cutter head close and close to the envelope structure, It is beneficial to establish the balance between earth pressure and earth pressure in shield machine, which can improve the engineering safety and engineering efficiency effectively, and control the penetration degree of shield tunneling at 6mm when cutting pile.
【學(xué)位授予單位】:北京建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U455.43
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉軍;王芳;周洪;王恩志;曹鵬;;圓形截面玻璃纖維筋混凝土樁體抗剪承載力研究[J];土木工程學(xué)報(bào);2016年09期
2 劉軍;荀桂富;王芳;金鑫;;盾構(gòu)始發(fā)與接收時(shí)頂力的數(shù)值模擬研究——以北京地鐵15號(hào)線某盾構(gòu)直接切削玻璃纖維筋樁工程為例[J];隧道建設(shè);2016年03期
3 曹成勇;施成華;彭立敏;;盾構(gòu)進(jìn)出洞時(shí)端頭土體縱向加固范圍研究[J];地下空間與工程學(xué)報(bào);2016年01期
4 李陽;蔣斌;陳杰;耿越;;48m長豎井條件下土壓平衡盾構(gòu)整體始發(fā)技術(shù)[J];施工技術(shù);2015年21期
5 逄顯昱;李穎娜;趙欣;周洪;;玻璃纖維筋圍護(hù)樁設(shè)計(jì)與施工的應(yīng)用研究[J];鐵道標(biāo)準(zhǔn)設(shè)計(jì);2015年10期
6 李東海;劉軍;王夢(mèng)恕;楊廣武;周洪;張頂立;;盾構(gòu)直削始發(fā)基坑圍護(hù)結(jié)構(gòu)變形數(shù)值分析與監(jiān)測(cè)研究[J];土木工程學(xué)報(bào);2015年S1期
7 馬云新;;復(fù)雜地層土壓平衡盾構(gòu)始發(fā)與接收施工風(fēng)險(xiǎn)及對(duì)策[J];建筑機(jī)械化;2015年04期
8 宋克志;王夢(mèng)恕;孫謀;;淺埋盾構(gòu)隧道端頭土體穩(wěn)定性極限平衡分析[J];巖石力學(xué)與工程學(xué)報(bào);2015年02期
9 侯建軍;肖銘釗;;高水壓粉砂地層泥水盾構(gòu)水下到達(dá)施工技術(shù)[J];土工基礎(chǔ);2014年06期
10 賁志江;楊平;張旭輝;王升福;;地鐵過江隧道大型泥水盾構(gòu)接收方式研究[J];鐵道建筑;2014年11期
相關(guān)會(huì)議論文 前1條
1 張慶賀;;盾構(gòu)工作井周圍土體加固處理技術(shù)[A];中國土木工程學(xué)會(huì)隧道及地下工程學(xué)會(huì)第八屆年會(huì)論文集[C];1994年
相關(guān)博士學(xué)位論文 前2條
1 滕麗;基于土體力學(xué)特性的盾構(gòu)隧道施工風(fēng)險(xiǎn)監(jiān)控系統(tǒng)研究[D];上海大學(xué);2012年
2 孫謀;盾構(gòu)隧道進(jìn)出洞土體顆粒漸進(jìn)破壞模式分析及加固精細(xì)化設(shè)計(jì)研究[D];北京交通大學(xué);2011年
相關(guān)碩士學(xué)位論文 前4條
1 宋旱云;深埋盾構(gòu)始發(fā)洞口土體穩(wěn)定性及施工方法研究[D];北京建筑大學(xué);2015年
2 周洪;玻璃纖維筋混凝土圍護(hù)結(jié)構(gòu)設(shè)計(jì)方法及其在盾構(gòu)工程中的應(yīng)用研究[D];北京建筑大學(xué);2015年
3 夏洋洋;廣州地鐵盾構(gòu)施工端頭預(yù)加固合理范圍研究及應(yīng)用[D];蘭州交通大學(xué);2015年
4 石研玉;小斷面泥水越江盾構(gòu)始發(fā)與接收關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2014年
,本文編號(hào):1922432
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1922432.html