鐵路大跨度勁性骨架混凝土拱橋施工階段穩(wěn)定性研究
發(fā)布時間:2018-04-27 13:56
本文選題:拱橋 + 勁性骨架; 參考:《西南交通大學》2015年碩士論文
【摘要】:勁性骨架混凝土拱橋兼有鋼管混凝土拱橋和鋼筋混凝土拱橋的優(yōu)點,尤其是其施工過程中的自架設系統(tǒng)為施工帶來了極大的方便,為拱橋向大跨徑發(fā)展提供了一個很好實現路徑。全文在結構和內容上分為以下兩個部分:第一部分簡要回顧了鋼管混凝土勁性骨架結構的發(fā)展歷程,介紹了有關拱橋的穩(wěn)定概念及其分類,總結了鋼管混凝土勁性骨架拱橋穩(wěn)定問題的研究現狀。然后簡要介紹了橋梁結構幾何非線性分析理論,闡述了拱橋的平面屈曲失穩(wěn)和側傾失穩(wěn)的基本理論和圓弧形拱橋的臨界荷載解析計算式,對橋梁彈性穩(wěn)定性分析中的有限單元法進行了簡要的論述和公式推導。第二部分以某主跨為445m的上承式高速鐵路鋼管混凝土勁性骨架拱橋為研究對象,運用MIDAS/CIVIL軟件,建立有限元分析模型,研究其施工過程靜力力學行為、穩(wěn)定性及成橋穩(wěn)定影響因素。主要得出以下結論:(1)在給定施工方案下,施工階段結構穩(wěn)定系數最低出現在拱圈腹板澆筑階段,施工時須密切注意該階段結構的穩(wěn)定問題;弦桿內、外側腹桿在施工過程中應力較大,施工時須注意防止其發(fā)生局部失穩(wěn);扣索索力對鋼骨架吊裝階段結構的穩(wěn)定影響較大,待骨架合攏后,索力大小對結構穩(wěn)定性影響不明顯,但對結構內力和變形調整有較大影響;整個施工階段結構第一類穩(wěn)定系數均大于4,說明在本文論及的施工方案下,結構在施工過程中是安全的;幾何非線性在成橋后對結構受力影響不明顯,基本可以不用考慮它對結構受力的影響。(2)成橋后,寬跨比、溫度效應、上部結構剛度、固定支座安置位置、核心混凝土剛度折減等因素均對結構穩(wěn)定有影響。就此橋而言,寬跨比對結構穩(wěn)定影響最為明顯。在寬跨比一定時,箱室寬度分布對成橋穩(wěn)定影響不明顯,箱室寬度分布對結構穩(wěn)定的影響隨寬跨變化而變化,箱室寬度分布須考慮施工階段結構穩(wěn)定性。溫度效應、上部結構剛度、固定支座安放位置、核心混凝土剛度折減等因素對結構的穩(wěn)定影響不明顯。
[Abstract]:The rigid skeleton concrete arch bridge has the advantages of both the concrete arch bridge and the reinforced concrete arch bridge. Especially, the self erection system in the construction process brings great convenience to the construction and provides a good way for the arch bridge to develop to the large span. The full text is divided into two parts in the structure and internal capacity: the first part is simple. The development course of the stiffening skeleton structure of concrete filled steel tube is reviewed, the concept and classification of the stability of the arch bridge are introduced, and the research status of the stability of the rigid frame arch bridge of the concrete filled steel tube is summarized. Then the geometric nonlinear analysis theory of the bridge structure is briefly introduced, and the base of the plane buckling and the lateral instability of the arch bridge is expounded. This theory and the analytic calculation formula of the critical load of arc arch bridge are briefly discussed and formula derivation for the finite element method in the analysis of the elastic stability of the bridge. In the second part, a concrete filled steel tube rigid skeleton arch bridge of a high speed railway with a main span as 445M is taken as the research object, and the finite element analysis is established by using the MIDAS/CIVIL software. The following conclusions are drawn as follows: (1) under the given construction scheme, the structural stability coefficient of the construction stage is the lowest in the stage of arch ring placement, and the stability of the structure must be paid close attention to in the construction period; in the chord bar, the outside belly is in the construction. In the process of high stress, it is necessary to pay attention to prevent local instability in construction. The cable force has great influence on the stability of the structure of the steel frame hoisting stage. After the frame closure, the cable force size has no obvious influence on the structural stability, but it has great influence on the structural internal force and deformation adjustment; the first kind of stability coefficient in the whole construction stage is all of the stability coefficient. More than 4, it shows that under the construction scheme discussed in this paper, the structure is safe during the construction process; the effect of the geometric nonlinearity on the structural stress is not obvious after the completion of the bridge. (2) after the bridge, the width span ratio, the temperature effect, the superstructure stiffness, the placement position of the fixed support, the core concrete stiffness. The width span distribution has no obvious effect on the stability of the bridge, and the width distribution of the chamber width varies with the width span, and the width distribution of the chamber must take into account the stability of the construction stage. The influence of the stiffness, the location of the fixed bearing, the reduction of core concrete stiffness on the stability of the structure is not obvious.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U445;U448.22
【參考文獻】
相關期刊論文 前3條
1 向中富;中承式拱橋橫向屈曲臨界荷載實用計算[J];重慶交通學院學報;1995年01期
2 楊世忠;;南寧大橋外傾式混凝土拱肋勁性骨架的設計與施工[J];工程科技;2009年01期
3 謝尚英,錢冬生;勁性骨架混凝土拱橋施工階段的非線性穩(wěn)定分析[J];土木工程學報;2000年01期
相關博士學位論文 前3條
1 張建民;大跨度鋼管混凝土拱橋承載能力與施工控制研究[D];華南理工大學;2001年
2 滕啟杰;鋼管混凝土拱橋的極限承載力研究[D];大連理工大學;2007年
3 李曉斌;大跨度鋼筋混凝土拱橋懸臂澆注施工控制與模型試驗研究[D];西南交通大學;2008年
相關碩士學位論文 前1條
1 張東卿;特大跨度鋼管混凝土勁性骨架拱橋溫度效應研究[D];西南交通大學;2012年
,本文編號:1811010
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1811010.html