斜柱橋初步設(shè)計(jì)研究
本文選題:斜柱橋 + 參數(shù)研究 ; 參考:《廣西大學(xué)》2017年碩士論文
【摘要】:橋梁結(jié)構(gòu)體系的創(chuàng)新對(duì)工程界來(lái)說(shuō)具有重大的意義,正是由于體系創(chuàng)新,才有了今天豐富多樣的橋梁形式。本文在總結(jié)前人對(duì)橋梁體系所做出的研究成果基礎(chǔ)上,提出了一種新型橋梁——斜柱橋,主要圍繞斜柱橋初步設(shè)計(jì)展開(kāi),對(duì)相關(guān)問(wèn)題做了研究。(1)本文首先對(duì)四種基本橋型的發(fā)展歷史作了簡(jiǎn)要回顧,指出橋梁結(jié)構(gòu)體系創(chuàng)新的意義,總結(jié)前人在現(xiàn)有幾種橋型基礎(chǔ)上所做的創(chuàng)新。(2)介紹斜柱橋的結(jié)構(gòu)形式及設(shè)計(jì)理論基礎(chǔ)。斜柱橋主要構(gòu)件為兩根斜桿及多根水平索,兩根斜桿連接成V型后與墩臺(tái)固結(jié),與橋面系分離,兩斜桿之間通過(guò)水平拉索連接,橋面荷載通過(guò)立柱傳給斜桿。通過(guò)調(diào)整水平索力可以使斜桿主要受軸力作用,彎矩大幅降低,主要變形特征為軸向壓縮變形,故稱為斜柱。本文推導(dǎo)出調(diào)整水平索索力的兩種方法,一種是根據(jù)斜柱橋力學(xué)原理推導(dǎo)出索力調(diào)整公式,另一種是參考斜拉橋調(diào)索的影響矩陣法。(3)對(duì)斜柱橋關(guān)鍵設(shè)計(jì)參數(shù)的研究。本文選取了斜柱橋設(shè)計(jì)過(guò)程中涉及的幾個(gè)重要參數(shù),主要包括水平索是否從中間立柱處斷開(kāi)、兩V型結(jié)構(gòu)是否對(duì)稱布置、斜柱與水平方向的夾角及水平索間距。通過(guò)研究特定參數(shù)對(duì)結(jié)構(gòu)產(chǎn)生的影響,計(jì)算分析總結(jié)相關(guān)規(guī)律,進(jìn)而得到不同設(shè)計(jì)參數(shù)對(duì)結(jié)構(gòu)力學(xué)性能的影響。(4)斜柱橋方案試設(shè)計(jì)。本文首先擬定斜柱橋各主體結(jié)構(gòu)尺寸及截面特性,確定邊界條件,之后運(yùn)用有限元分析軟件Midas/Civil建立斜柱橋空間模型,參照現(xiàn)有規(guī)范擬定技術(shù)標(biāo)準(zhǔn)和荷載組合,對(duì)斜柱橋靜力特性、動(dòng)力特性及穩(wěn)定性進(jìn)行計(jì)算,結(jié)果均滿足規(guī)范要求。
[Abstract]:The innovation of the bridge structure system is of great significance to the engineering community. It is the system innovation that has a rich variety of bridge forms today. On the basis of the research results made by the predecessors to the bridge system, a new type of bridge, inclined column bridge is proposed, which is mainly around the preliminary design of the oblique column bridge. The problem is studied. (1) first of all, this paper briefly reviews the history of the development of the four basic bridges, points out the significance of the innovation of the bridge structure system, and summarizes the innovations made by the predecessors on the existing bridge types. (2) the structural form and the theoretical foundation of the oblique column bridge are introduced. The main components of the skew column bridge are two oblique bars and multiple horizontal cables. After the two inclined rods are connected to the V type and the pier is consolidated and the pier is consolidated and separated from the bridge deck system, the two inclined rods are connected by the horizontal cable. The load of the deck is passed to the inclined rod through the vertical column. By adjusting the horizontal cable force, the inclined rod is mainly affected by the axial force and the bending moment is greatly reduced. The main deformation is the axial compression deformation, so it is called the oblique column. This paper deduces the adjustment in this paper. Two methods of horizontal cable force, one is to derive the adjustment formula of cable force according to the mechanics principle of oblique column bridge, the other is to refer to the influence matrix method of the cable of cable-stayed bridge. (3) the study of the key design parameters of the skew column bridge. This paper selects several important parameters involved in the design process of the oblique column bridge, mainly including whether the horizontal cable is from the middle column or not. It is disconnected, the two V structure is symmetrical arrangement, the angle of the inclined column and horizontal direction and the horizontal cable spacing. By studying the influence of the specific parameters on the structure, the related laws are summed up, and the influence of the different design parameters on the mechanical properties of the structure is obtained. (4) the design of the oblique column bridge scheme. First, the main body junctions of the oblique column bridge are drawn up. The boundary conditions are determined by the structure size and cross section characteristics. Then the spatial model of the skew column bridge is established by the finite element analysis software Midas/Civil. The static characteristics, dynamic characteristics and stability of the skew bridge are calculated with reference to the existing specifications and load combinations. The results are full of standard requirements.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U448
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫全勝;孟安鑫;;基于影響矩陣法的非對(duì)稱獨(dú)塔斜拉橋索力優(yōu)化[J];中外公路;2016年03期
2 胡常福;鄭恒;任偉新;上官興;;新型索拱橋索力與拱軸線雙優(yōu)化實(shí)用方法[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年07期
3 胡常福;李麗;陳亮;;桁式索拱橋體系協(xié)作機(jī)理研究[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);2014年01期
4 孫斌;肖汝誠(chéng);CAI C S;;部分地錨斜拉橋經(jīng)濟(jì)性能分析[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年10期
5 王菲;田山坡;禚一;;高墩大跨連續(xù)剛構(gòu)橋的穩(wěn)定性分析[J];鐵道工程學(xué)報(bào);2012年10期
6 張楊永;肖汝誠(chéng);;超大跨度V塔斜拉橋的經(jīng)濟(jì)與力學(xué)特性[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年10期
7 孫斌;肖汝誠(chéng);賈麗君;;主跨1400m部分地錨式斜拉橋方案試設(shè)計(jì)[J];橋梁建設(shè);2009年03期
8 陳寶春;;拱橋技術(shù)的回顧與展望[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
9 張春霞;李昌鑄;盧鐵瑞;白紅英;;現(xiàn)行橋梁抗震設(shè)計(jì)的反應(yīng)譜分析方法[J];公路交通科技(應(yīng)用技術(shù)版);2008年09期
10 呂建根;王榮輝;;斜拉拱組合橋與普通拱橋受力性能對(duì)比[J];公路;2008年08期
相關(guān)博士學(xué)位論文 前3條
1 劉迎春;上承式拉索組合拱橋索力優(yōu)化與受力性能研究[D];北京工業(yè)大學(xué);2012年
2 崔軍;大跨度鋼管混凝土拱橋受力性能分析[D];浙江大學(xué);2003年
3 趙長(zhǎng)軍;大跨索桁橋初步設(shè)計(jì)研究[D];浙江大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 秦龍;矮塔斜拉橋參數(shù)敏感性分析及拉索損傷研究[D];長(zhǎng)安大學(xué);2014年
2 王文俊;異形拱橋拱圈參數(shù)與局部應(yīng)力分析[D];西南交通大學(xué);2011年
3 孟續(xù)東;1700米主跨斜拉—懸索協(xié)作體系橋梁方案設(shè)計(jì)和靜動(dòng)力計(jì)算分析研究[D];西南交通大學(xué);2010年
4 劉軍;系桿拱橋力學(xué)特性與穩(wěn)定性分析[D];大連理工大學(xué);2009年
5 馬少飛;大跨度預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋撓度成因分析[D];北京交通大學(xué);2009年
6 王愛(ài)國(guó);大跨度斜拉橋動(dòng)力特性及抗震性能分析[D];武漢理工大學(xué);2008年
7 王曉臣;移動(dòng)荷載作用下梁橋動(dòng)力響應(yīng)的數(shù)值分析[D];浙江工業(yè)大學(xué);2008年
8 崔學(xué)武;連續(xù)梁橋施工控制方法[D];同濟(jì)大學(xué);2007年
9 王玫玲;大跨度下承式鋼拱橋動(dòng)特性及非線性屈曲問(wèn)題研究[D];暨南大學(xué);2006年
10 李彩霞;鋼管混凝土拱橋動(dòng)力特性的研究[D];武漢理工大學(xué);2004年
,本文編號(hào):1808164
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1808164.html