基于RFID數(shù)據(jù)的城市道路交通狀態(tài)判別方法
本文選題:交通狀態(tài)判別 切入點:射頻識別技術(RFID) 出處:《東南大學》2015年碩士論文
【摘要】:實時、準確的交通狀態(tài)判別是交通管理、交通誘導和交通控制實現(xiàn)的前提和基礎。城市交通狀態(tài)的判別,必須依賴于交通信息采集技術和數(shù)據(jù)處理技術的發(fā)展;谏漕l識別技術(RFID, Radio Frequency Identification Technology)和視頻檢測技術的綜合交通數(shù)據(jù)采集可以獲得地點速度和路段行程時間,基于上述數(shù)據(jù),本文城市道路交通狀態(tài)判別方法進行研究,主要研究內(nèi)容如下。首先,在進行交通狀態(tài)判別文獻研究的基礎上,根據(jù)基于RFID技術的交通數(shù)據(jù)采集原理和特點,提出了通過建立基站網(wǎng)絡、匹配起終點基站過車數(shù)據(jù)和數(shù)據(jù)匯集得到平均行程時間的數(shù)據(jù)處理方法;介紹了基于視頻檢測技術的交通數(shù)據(jù)采集原理和根據(jù)采集到的原始數(shù)據(jù)獲得平均地點速度的方法。并將交通狀態(tài)劃分為暢通、緩行和擁堵三種狀態(tài),研究了通過多人觀看各基站的實時視頻獲得道路上實際交通狀態(tài)的方法。其次,論文選擇了特定的城市路網(wǎng),包括43個基站,建立了61個基站對,采集了6個月的RFID數(shù)據(jù),進行行程時間的計算,并對行程時間進行了多方面的分析,結果表明,基于RFID技術獲得的行程時間數(shù)據(jù)可以很好的反映交通運行情況,可作為交通狀態(tài)判別指標。再次,研究了以視頻采集技術獲得的平均地點速度為指標,結合實際交通狀態(tài),考慮到不同基站的具體情況,確定各基站的交通狀態(tài)判別閡值的方法,并以南京市100個基站為實例對判別效果進行評價。最后,提出了以基于視頻技術獲取的起點基站平均地點速度和終點基站平均地點速度以及基于RFID技術獲取的基站對平均行程時間為指標,基于模糊評判的交通狀態(tài)判別方法,并以南京市某基站對為實例,將交通狀態(tài)判別結果與實際交通狀態(tài)進行對比,評價判別效果。將綜合交通數(shù)據(jù)采集技術應用于交通狀態(tài)判別是智能交通重要發(fā)展方向之一,在本文的研究基礎上,對未來的研究方向進行了展望。
[Abstract]:Real-time and accurate identification of traffic state is the premise and foundation of traffic management, traffic guidance and traffic control. It must depend on the development of traffic information acquisition technology and data processing technology. The integrated traffic data acquisition based on RFID (Radio Frequency Identification Technology) and video detection technology can obtain the location speed and section travel time, based on the above data, The main contents of this paper are as follows: firstly, based on the research of traffic status discrimination literature, according to the principle and characteristics of traffic data collection based on RFID technology, A data processing method is proposed to get the average travel time by setting up the base station network and matching the traffic passing data and data collection of the terminal base station. This paper introduces the principle of traffic data acquisition based on video detection technology and the method of getting average location speed according to the original data collected. The traffic state is divided into three states: smooth, slow and congested. This paper studies the method of obtaining the actual traffic state on the road by watching the real-time video of each base station by many people. Secondly, the paper selects a specific urban network, including 43 base stations, establishes 61 base station pairs, and collects RFID data for 6 months. The results show that the travel time data based on RFID technology can well reflect the traffic situation, and can be used as a traffic state discrimination index. This paper studies the method of determining the threshold value of traffic state of each base station according to the actual traffic state and considering the specific conditions of different base stations, taking the average site speed obtained by video capture technology as the index, and considering the specific conditions of different base stations. And take 100 base stations in Nanjing as an example to evaluate the discriminant effect. Finally, Based on the average location speed of the base station and the average location speed of the terminal base station obtained by video technology and the average travel time of the base station acquired by RFID technology, the traffic state discrimination method based on fuzzy evaluation is proposed. Taking a base station pair in Nanjing as an example, the result of traffic condition discrimination is compared with the actual traffic state, and the discriminant effect is evaluated. It is one of the important development directions of intelligent transportation to apply comprehensive traffic data acquisition technology to traffic condition discrimination. Based on the research in this paper, the future research direction is prospected.
【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U491
【參考文獻】
相關期刊論文 前10條
1 錢超;徐娜;許宏科;代亮;李雪;;基于蒙特卡羅模擬的交通狀態(tài)辨識[J];交通運輸系統(tǒng)工程與信息;2014年03期
2 王曦;祝付玲;;基于高斯混合分布的交通擁堵評價模型[J];公路交通科技;2011年02期
3 田世艷;劉偉銘;;基于模糊綜合評價的路段實時交通狀態(tài)判別方法研究[J];科學技術與工程;2010年29期
4 楊兆升;張茂雷;;基于模糊綜合評判的道路交通狀態(tài)分析模型[J];公路交通科技;2010年09期
5 曹成濤;崔鳳;林曉輝;;基于神經(jīng)網(wǎng)絡的交通狀態(tài)模糊判別方法[J];科學技術與工程;2010年21期
6 張心哲;關偉;;基于Hough變換的交通流狀態(tài)辨別方法[J];系統(tǒng)工程;2010年01期
7 戢曉峰;劉瀾;何增輝;;基于模糊推理的區(qū)域路網(wǎng)交通狀態(tài)分析方法[J];交通運輸工程與信息學報;2009年03期
8 鄭建湖;文子娟;黃明芳;伍雄斌;;交通擁擠狀態(tài)模糊識別方法的設計與應用[J];華東交通大學學報;2009年01期
9 孫晴;王清華;;基于路段行程時間的道路交通狀態(tài)判別方法[J];長江大學學報(自然科學版)理工卷;2008年04期
10 吳薇;朱光喜;陳云鋒;;基于視頻技術的嵌入式交通信息采集系統(tǒng)[J];計算機應用研究;2008年07期
,本文編號:1679893
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1679893.html