連續(xù)剛構(gòu)橋梁的動(dòng)力優(yōu)化研究
發(fā)布時(shí)間:2018-03-25 02:05
本文選題:高墩大跨連續(xù)剛構(gòu)橋 切入點(diǎn):抗震性能 出處:《昆明理工大學(xué)》2015年碩士論文
【摘要】:預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋梁是一種墩梁固結(jié)的結(jié)構(gòu)形式,從結(jié)構(gòu)力學(xué)上來(lái)講是一種超靜定結(jié)構(gòu)。其優(yōu)點(diǎn)較多:整體性好、跨度大;結(jié)構(gòu)連續(xù)無(wú)伸縮縫、行車平順;相關(guān)材料用量;施工方便;墩頂處的負(fù)彎矩消減了跨中的正彎矩;能夠較好的適應(yīng)預(yù)應(yīng)力、混凝土收縮、徐變以及溫度變化產(chǎn)生的位移;在大跨度橋梁結(jié)構(gòu)中造價(jià)相對(duì)來(lái)說(shuō)低很多;結(jié)構(gòu)形式纖巧,造型優(yōu)美等;谶@些優(yōu)點(diǎn),連續(xù)剛構(gòu)廣泛應(yīng)用于高墩大跨結(jié)構(gòu)形式之中,例如對(duì)于航行要求較高的大河、深山中的V溝等復(fù)雜地形,連續(xù)剛構(gòu)的應(yīng)用就大量存在。由于此種橋型的大量應(yīng)用,相關(guān)方面設(shè)計(jì)要求非常高,但是,這種橋型的設(shè)計(jì)工作量大,結(jié)構(gòu)中的設(shè)計(jì)參數(shù)大多是經(jīng)驗(yàn)得來(lái)的,這是不合理的。高墩大跨徑的PC連續(xù)剛構(gòu)橋廣泛應(yīng)用于云貴高原西南地區(qū)地形復(fù)雜的地方,而且這樣的地區(qū)地震活動(dòng)頻繁,大震重現(xiàn)期較短,并且連續(xù)剛構(gòu)橋基于抗震性能的參數(shù)優(yōu)化又少之又少,利用經(jīng)驗(yàn)值對(duì)連續(xù)剛構(gòu)橋進(jìn)行設(shè)計(jì)既不經(jīng)濟(jì),又沒(méi)理論依據(jù),結(jié)構(gòu)安全儲(chǔ)備度尚不可知。因此,對(duì)高墩大跨徑PC連續(xù)剛構(gòu)橋基于抗震性能的參數(shù)優(yōu)化有著重大的意義。本文以昆明市轎子山旅游專線公路3合同段的馬過(guò)河大橋?yàn)檠芯勘尘?圍繞連續(xù)剛構(gòu)橋基于抗震性能的參數(shù)優(yōu)化展開(kāi)研究工作,主要完成的工作和結(jié)論如下:(1)介紹了地震對(duì)橋梁造成的各種各樣不同程度的損害,以及地震對(duì)橋梁造成損害后的啟示以及教訓(xùn),同時(shí)介紹了連續(xù)剛構(gòu)橋的發(fā)展歷程和抗震方面的研究進(jìn)程。對(duì)結(jié)構(gòu)地震反應(yīng)的分析方法進(jìn)行了詳細(xì)闡述,引出了本文所用的抗震研究方法-靜力彈塑性分析方法(Pushover分析方法),并詳細(xì)介紹了其方法使用的理論依據(jù)和使用方法。(2)對(duì)已經(jīng)建成的連續(xù)剛構(gòu)橋的參數(shù)進(jìn)行整理歸納,得出相應(yīng)的使用范圍。根據(jù)地震的設(shè)防等級(jí),設(shè)定目標(biāo)函數(shù)。首先,利用了正交表對(duì)參數(shù)進(jìn)行優(yōu)化,初步得出了參數(shù)組合:邊中跨比值為0.6,雙薄壁墩墩間距為10m,墩厚度為4m,相應(yīng)的墩壁厚度為0.7m。利用正交表在節(jié)省優(yōu)化時(shí)間的前提下,又保證了優(yōu)化結(jié)果的精度。(3)正交表只能在已經(jīng)組合好的參數(shù)中,選出最優(yōu)的參數(shù)組合來(lái),并不能脫離這個(gè)范圍,有一定的局限性。在正交表36個(gè)參數(shù)組合不變的情況下,利用神經(jīng)網(wǎng)絡(luò)和遺傳算法進(jìn)行求解最優(yōu)值,神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的非線性映射能力,將訓(xùn)練結(jié)果保存用遺傳算法進(jìn)行尋優(yōu),求解出最優(yōu)值。得出的最優(yōu)組合是:邊中跨比值為0.53,墩間距為9.56m,墩的厚度為3.99m,墩壁厚度為0.654m。
[Abstract]:Prestressed concrete continuous rigid frame bridge is a structural form of consolidation of piers and beams, which is a statically indeterminate structure in terms of structural mechanics. It has many advantages: good integrity, large span, continuous structure without expansion joints, smooth running; The negative bending moment at the top of the pier reduces the positive moment in the span, and can adapt to the displacement caused by the prestress, concrete shrinkage, creep and temperature change. In the long span bridge structure, the cost is much lower, the structure form is slender, the shape is beautiful and so on. Based on these advantages, continuous rigid frame is widely used in the form of long span structure with high piers, such as the river with high navigation requirements. The application of continuous rigid frame exists in a large number of complex terrain such as V-ditch in the deep mountains. Because of the extensive application of this kind of bridge, the design requirements of related aspects are very high, but the design workload of this kind of bridge is great. The design parameters of the structure are mostly experienced, which is unreasonable. The PC continuous rigid frame bridge with high piers and long span is widely used in the places with complicated topography in the southwest of Yunnan-Guizhou Plateau, and the seismic activity is frequent in this area. The recurrence period of large earthquake is short, and the parameter optimization of continuous rigid frame bridge based on seismic performance is rare. It is neither economical nor theoretical basis to design continuous rigid frame bridge by using the experience value. Therefore, the degree of structural safety reserve is unknown. It is of great significance to optimize the parameters of PC continuous rigid frame bridge with high piers and long span based on seismic performance. The research work on parameter optimization based on seismic performance of continuous rigid frame bridge is carried out. The main work and conclusions are as follows: 1) the various damage caused by earthquake to bridge is introduced. At the same time, the development history and seismic research process of continuous rigid frame bridge are introduced. The analysis method of seismic response of structure is described in detail. The static elastic-plastic analysis method and pushover analysis method used in this paper are introduced. The theoretical basis and application method of the method are introduced in detail. The parameters of the completed continuous rigid frame bridge are summarized. Get the corresponding range of use. According to the level of earthquake fortification, set the objective function. First, the orthogonal table is used to optimize the parameters, The parameter combination is obtained: the ratio of side to middle span is 0.6, the spacing of double thin-walled piers is 10m, the thickness of piers is 4m, and the corresponding thickness of piers is 0.7m.The orthogonal table is used to save optimization time. It also ensures the accuracy of the optimization result. (3) the orthogonal table can only select the optimal parameter combination among the parameters that have already been assembled, which is not out of this range, and has certain limitations. When the 36 parameter combinations of orthogonal table are not changed, Using neural network and genetic algorithm to solve the optimal value, neural network has a strong ability of nonlinear mapping, the training results are saved using genetic algorithm for optimization, The optimum combination is: the ratio of side to middle span is 0.53, the distance between piers is 9.56m, the thickness of piers is 3.99m, and the thickness of pier wall is 0.654m.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U448.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 李愛(ài)群;王浩;;大跨懸索橋地震響應(yīng)控制的阻尼器最優(yōu)布置方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
2 陳海波,劉保東;大跨度高墩連續(xù)剛構(gòu)橋空間地震響應(yīng)分析[J];工程抗震與加固改造;2005年03期
相關(guān)碩士學(xué)位論文 前3條
1 陳金濤;高墩大跨預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋抗震性能研究[D];長(zhǎng)安大學(xué);2011年
2 呂國(guó)棟;基于Pushover分析的城市高架橋梁抗震性能評(píng)估[D];蘭州交通大學(xué);2012年
3 于倩倩;河床式水電站廠房結(jié)構(gòu)的地震響應(yīng)分析方法研究[D];天津大學(xué);2012年
,本文編號(hào):1661037
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1661037.html
最近更新
教材專著