曲線(xiàn)連續(xù)梁橋施工監(jiān)控技術(shù)研究
本文選題:曲線(xiàn)梁橋 切入點(diǎn):施工監(jiān)控 出處:《蘭州交通大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:彎橋是為適應(yīng)地形、地物的要求,而逐漸發(fā)展起來(lái)的一種橋梁結(jié)構(gòu)形式,相對(duì)于直橋或斜交橋而言,彎扭耦合效應(yīng)是彎橋突出的受力特點(diǎn)。亦是造成曲線(xiàn)內(nèi)側(cè)卸載、外側(cè)加載最主要的原因。在圓心角較小、橋?qū)捿^大時(shí),曲線(xiàn)內(nèi)外側(cè)受力出現(xiàn)明顯差異,內(nèi)側(cè)甚至出現(xiàn)拉應(yīng)力。鑒于彎橋的受力特點(diǎn),有必要對(duì)較大跨度彎橋施工過(guò)程進(jìn)行全方位、實(shí)時(shí)跟蹤監(jiān)控,以確保施工安全,成橋后線(xiàn)形、內(nèi)力滿(mǎn)足設(shè)計(jì)要求。橋梁施工監(jiān)控技術(shù)發(fā)展已有一段歷程,監(jiān)控內(nèi)容、方法日趨成熟。但由于曲線(xiàn)橋監(jiān)控實(shí)例還比較少,監(jiān)控要點(diǎn)多且復(fù)雜,本文結(jié)合工程實(shí)例對(duì)橋梁施工監(jiān)控技術(shù)進(jìn)行運(yùn)用、研究,借助有限元分析軟件Midas/Civil建立全橋模型,對(duì)懸臂施工各個(gè)節(jié)段進(jìn)行實(shí)時(shí)跟蹤監(jiān)控,以線(xiàn)形、內(nèi)力作為立足點(diǎn),對(duì)橋梁施工全過(guò)程進(jìn)行監(jiān)測(cè)、調(diào)控,確保成橋線(xiàn)形及內(nèi)力滿(mǎn)足設(shè)計(jì)要求,同時(shí)保證施工安全。另外,鑒于服役橋梁安全運(yùn)營(yíng)的考慮,本文提出對(duì)在役橋梁健康狀態(tài)進(jìn)行監(jiān)測(cè)。從被動(dòng)的加固、維修到主動(dòng)的健康狀態(tài)監(jiān)測(cè),從而對(duì)在役橋梁健康狀態(tài)有針對(duì)性的維修、檢護(hù),使其安全、耐久的運(yùn)營(yíng)。本文主要內(nèi)容如下:(1)扼要介紹了彎橋發(fā)展歷程、概況,以及不同于直橋或斜交橋的特點(diǎn)。包括受力特點(diǎn)、荷載、構(gòu)造、施工特點(diǎn),另外,簡(jiǎn)述了國(guó)內(nèi)外施工監(jiān)控技術(shù)的發(fā)展概況;(2)分析了曲線(xiàn)橋在水平面內(nèi)的位移及豎向位移,為施工監(jiān)控的進(jìn)行提供理論依據(jù)。(3)詳細(xì)介紹了施工監(jiān)控的內(nèi)容和方法,以及各種影響因素。提出了橋梁施工過(guò)程模擬分析的三種方法,并對(duì)參數(shù)誤差提出現(xiàn)階段較為常用的調(diào)整理論和方法;(4)結(jié)合工程實(shí)例對(duì)施工監(jiān)控技術(shù)(線(xiàn)形、內(nèi)力、邊、中跨合攏)進(jìn)行模擬分析。借助有限元分析軟件Midas/Civil建立全橋模型,對(duì)懸臂施工節(jié)段預(yù)拱度進(jìn)行計(jì)算。對(duì)曲線(xiàn)橋水平面內(nèi)線(xiàn)位移及扭轉(zhuǎn)角進(jìn)行分析,對(duì)線(xiàn)形、內(nèi)力數(shù)據(jù)進(jìn)行歸納整理。(5)展望及結(jié)論部分,本橋由于曲率半徑較大(600m),跨度較小(38.5+77+38.5m),因此在橋梁環(huán)向、徑向方向的線(xiàn)位移及沿x、y、z軸的扭轉(zhuǎn)角均比較小,在實(shí)際施工控制中可不必設(shè)置糾偏值。橋梁合攏后,得到了較為理想的狀態(tài),說(shuō)明了假定的合理性。最后預(yù)測(cè)了今后施工監(jiān)控發(fā)展方向。對(duì)于彎橋計(jì)算理論研究尚有不足,計(jì)算精度有待進(jìn)一步提高。
[Abstract]:Curved bridge is a kind of bridge structure which is developed gradually in order to meet the requirements of terrain and ground objects. Compared with straight bridge or oblique bridge, the coupling effect of bending and torsion is the prominent force characteristic of curved bridge, and it also causes the inside of curve to unload. When the center angle is small and the bridge width is large, there are obvious differences in the internal and external side of the curve, and even tensile stress on the inner side of the curve. In view of the stress characteristics of the curved bridge, It is necessary to monitor the construction process of long-span curved bridge in all directions and in real time, so as to ensure the safety of construction, the shape of the back of the bridge, and the internal force to meet the design requirements. The method is becoming more and more mature, but the monitoring examples of curved bridges are still few and the monitoring points are more and more complicated. This paper applies the monitoring technology of bridge construction with engineering examples, studies and establishes the whole bridge model with the help of finite element analysis software Midas/Civil. The whole process of bridge construction is monitored and regulated to ensure that the line shape and internal force meet the design requirements and ensure the safety of the construction, taking the line shape and internal force of the cantilever construction as the foothold, and monitoring and controlling the whole process of the bridge construction, in order to ensure that the line shape and internal force of the bridge meet the design requirements, and ensure the safety of the construction. In view of the consideration of the safe operation of the bridges in service, this paper proposes to monitor the health status of the existing bridges, from passive reinforcement and maintenance to active monitoring of the health status of the existing bridges, so as to maintain, inspect and protect the health status of the bridges in service. The main contents of this paper are as follows: 1) briefly introduce the development course, general situation and characteristics of curved bridge, which are different from straight bridge or oblique bridge, including the characteristics of force, load, structure, construction, and construction. This paper briefly introduces the development of construction monitoring technology at home and abroad, analyses the displacement and vertical displacement of curved bridge in horizontal plane, and provides the theoretical basis for construction monitoring and control, and introduces in detail the contents and methods of construction monitoring and control. Three methods of simulation and analysis of bridge construction process are put forward, and the adjustment theory and method commonly used in the present stage of parameter error are put forward, which are combined with engineering examples to monitor and control construction technology (linear, internal force, edge). With the help of the finite element analysis software Midas/Civil, the full-bridge model is established to calculate the pre-camber of cantilever construction segment. The linear displacement and torsion angle of the horizontal plane of the curved bridge are analyzed. The internal force data are summarized and sorted out. (5) in the part of prospect and conclusion, due to the larger curvature radius of 600mb and the smaller span of 38.577 38.5mW, the linear displacement and the torsional angle along xynz axis are smaller in the circumferential and radial direction of the bridge. In the actual construction control, there is no need to set the deviation correction value. After the bridge is closed, a more ideal state is obtained, which shows the rationality of the assumption. Finally, the development direction of construction monitoring and control in the future is forecasted, and the theoretical research on the curved bridge calculation is still insufficient. The accuracy of calculation needs to be further improved.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武紅健;朱慶鋒;;線(xiàn)形監(jiān)控技術(shù)在某鐵路連續(xù)梁懸臂施工中的應(yīng)用[J];建筑技術(shù);2015年S1期
2 梁瑤;;橋梁施工監(jiān)控技術(shù)[J];施工技術(shù);2014年S1期
3 何慶華;衛(wèi)星;;彎扭耦合下曲線(xiàn)混凝土箱梁截面應(yīng)力狀態(tài)的受力機(jī)理分析[J];鐵道標(biāo)準(zhǔn)設(shè)計(jì);2013年02期
4 高大峰;王方輝;任禹州;何新成;;卡爾曼濾波法在大跨連續(xù)梁橋施工控制中的應(yīng)用[J];施工技術(shù);2012年09期
5 姚健鵬;梁明盛;陳忠誠(chéng);;預(yù)應(yīng)力混凝土連續(xù)箱梁橋懸臂施工監(jiān)控[J];公路;2012年02期
6 李君;龔玉書(shū);翟廣范;;淺述曲線(xiàn)梁橋的發(fā)展與結(jié)構(gòu)分析[J];黑龍江科技信息;2009年32期
7 王毅;葉見(jiàn)曙;;混凝土箱梁懸臂施工中溫度梯度對(duì)標(biāo)高影響的分析與控制[J];公路交通科技;2009年08期
8 沈典棟;梁錦鋒;;大跨徑連續(xù)梁橋施工預(yù)拱度預(yù)測(cè)[J];中南公路工程;2006年02期
9 盧哲安;于清亮;汪娟娟;;灰色理論在連續(xù)梁橋施工控制中的應(yīng)用[J];武漢理工大學(xué)學(xué)報(bào);2006年03期
10 吳俊強(qiáng),余昆,呂運(yùn)冰;豎曲線(xiàn)對(duì)橋梁施工控制的影響[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2005年05期
相關(guān)碩士學(xué)位論文 前2條
1 李文江;大跨度預(yù)應(yīng)力混凝土連續(xù)梁橋施工控制[D];大連理工大學(xué);2013年
2 楊可可;先簡(jiǎn)支后連續(xù)梁橋施工預(yù)拱度分析[D];中南林業(yè)科技大學(xué);2013年
,本文編號(hào):1651461
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1651461.html