斜拉—懸吊協(xié)作體系橋梁設(shè)計(jì)關(guān)鍵問題研究
本文選題:斜拉-懸吊協(xié)作體系橋梁 切入點(diǎn):有限元分析 出處:《湖南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:國內(nèi)外跨海連島工程建設(shè)對橋梁的跨徑提出了更高的要求。在新材料和施工工法等技術(shù)發(fā)展的同時(shí),設(shè)計(jì)具備更大跨越能力的橋梁結(jié)構(gòu)體系顯得尤為重要。斜拉-懸吊協(xié)作體系橋梁是在斜拉橋和懸索橋的基礎(chǔ)上發(fā)展而來的一種新型纜索承重橋梁。它把這兩種橋型結(jié)合起來,如能揚(yáng)長避短,則在大跨度橋梁結(jié)構(gòu)上有很大的競爭力。但由于這種結(jié)構(gòu)形式尚存在一些亟待解決的關(guān)鍵技術(shù)問題,目前國內(nèi)外尚無真正意義上的斜拉-懸吊協(xié)作體系橋梁實(shí)踐。本文以洞庭湖二橋斜拉-懸吊協(xié)作體系橋梁方案為工程背景,運(yùn)用橋梁結(jié)構(gòu)靜動力非線性分析系統(tǒng)BNLAS建立了全橋有限元模型,對設(shè)計(jì)中存在的一些關(guān)鍵問題進(jìn)行了研究,具體工作和相關(guān)結(jié)論如下:(1)分析了斜拉-懸吊協(xié)作體系橋梁在縱橋向、豎向和扭轉(zhuǎn)向剛度,討論了增大結(jié)構(gòu)剛度的體系影響因素;對主要受力構(gòu)件的活載影響線進(jìn)行了分析,研究了吊索與斜拉索的相互影響;討論了溫度作用下吊索、主纜、主塔和加勁梁的受力特征。對該體系的若干關(guān)鍵參數(shù)進(jìn)行了比較分析,確定了合理的結(jié)構(gòu)布置形式。(2)確定了斜拉-懸吊協(xié)作體系橋梁合理成橋狀態(tài)的設(shè)計(jì)準(zhǔn)則和實(shí)現(xiàn)步驟。經(jīng)過多次優(yōu)化調(diào)整,得到了合理的加勁梁線形、斜拉索張拉力、吊索無應(yīng)力長度和主纜幾何線形,從而確定了較合理的斜拉-懸吊協(xié)作體系橋梁成橋內(nèi)力狀態(tài)。(3)對斜拉-懸吊協(xié)作體系橋梁的施工過程進(jìn)行了仿真分析,討論了斜拉-懸吊協(xié)作體系橋梁方案的施工可實(shí)施性;對洞庭湖二橋的斜拉-懸吊協(xié)作體系橋梁方案進(jìn)行了結(jié)構(gòu)整體計(jì)算分析,驗(yàn)算了主要構(gòu)件的受力、位移等。(4)針對疲勞問題較突出的中跨過渡區(qū)斜拉索、吊索和加勁梁,采用不同的疲勞荷載進(jìn)行了驗(yàn)算,并討論了大跨度橋梁整體疲勞驗(yàn)算荷載選擇的方法和可行性。研究表明,斜拉-懸吊協(xié)作體系橋梁的縱向、橫向及豎向剛度均大于常規(guī)單跨懸索橋;獲得了影響斜拉-懸吊協(xié)作體系橋梁結(jié)構(gòu)性能的關(guān)鍵參數(shù);確定了結(jié)構(gòu)合理的成橋狀態(tài)。計(jì)算表明施工方法安全可靠、方便可行;主要構(gòu)件的疲勞應(yīng)力幅小于控制疲勞應(yīng)力幅,結(jié)構(gòu)整體疲勞性能滿足規(guī)范要求。本文所開展的工作和得到的結(jié)論,對此種橋梁結(jié)構(gòu)的認(rèn)識和推廣將起到了重要的作用。
[Abstract]:At home and abroad, the construction of offshore and island crossing projects has put forward higher requirements for the span of bridges. At the same time of the development of new materials and construction methods and other technologies, It is particularly important to design a bridge structure with greater span capacity. The cable-stayed suspension system bridge is a new type of cable-bearing bridge developed on the basis of cable-stayed bridge and suspension bridge. It combines the two types of bridge. If we can take advantage of the advantages and avoid the disadvantages, we will have great competitiveness in the long-span bridge structure. However, there are still some key technical problems to be solved in this structure form. At present, there is no real practice of cable-stayed suspension system bridge at home and abroad. This paper takes the bridge scheme of the second bridge of Dongting Lake as the engineering background. The finite element model of the whole bridge is established by using the bridge structure static and dynamic nonlinear analysis system (BNLAS), and some key problems in the design are studied. The concrete work and related conclusions are as follows: 1) analyzing the longitudinal, vertical and torsional stiffness of cable-stayed suspension system bridges, discussing the influence factors of increasing the structural stiffness, and analyzing the live load influence lines of the main load-bearing members. The interaction between sling and stay cable is studied, the stress characteristics of sling, main cable, main tower and stiffened beam under the action of temperature are discussed, and some key parameters of the system are compared and analyzed. The design criteria and realization steps for the reasonable state of bridge completion of cable-stayed suspension cooperative system bridges are determined. After several optimization adjustments, the reasonable stiffening beam line shape and cable tension are obtained. The length of the sling without stress and the geometry of the main cable are determined, so that the reasonable internal force state of the cable-stayed suspension system bridge is determined. 3) the construction process of the cable-stayed suspension cooperative system bridge is simulated and analyzed. The construction feasibility of the cable-stayed suspension system bridge scheme is discussed, and the structural integral calculation and analysis of the cable-stayed suspension cooperative system bridge scheme of Dongting Lake second Bridge are carried out, and the stress of the main components is checked and calculated. Displacement, etc. (4) checking calculation of cable, slings and stiffened beams in mid-span transition zone with different fatigue loads is carried out, and the method and feasibility of load selection for overall fatigue checking of long-span bridges are discussed. The longitudinal, transverse and vertical stiffness of the cable-stayed suspension system bridge is higher than that of the conventional single-span suspension bridge, and the key parameters affecting the structural performance of the cable-stayed suspension system bridge are obtained. The calculation shows that the construction method is safe, reliable, convenient and feasible, and the fatigue stress amplitude of the main components is smaller than that of the control fatigue stress amplitude. The fatigue property of the structure as a whole can meet the requirements of the code. The work carried out in this paper and the conclusions obtained will play an important role in understanding and popularizing this kind of bridge structure.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U442.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭健;;跨海大橋建設(shè)的主要技術(shù)現(xiàn)狀與面臨的挑戰(zhàn)[J];橋梁建設(shè);2010年06期
2 王仁貴;;杭州灣跨海大橋總體設(shè)計(jì)[J];公路;2009年05期
3 李熠;顏東煌;李學(xué)文;;混凝土斜拉橋合理成橋狀態(tài)研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
4 王為圣;邱龍;李建偉;;斜拉橋成橋合理索力確定方法的研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
5 劉毅;李愛群;繆長青;;大跨懸索橋成橋狀態(tài)初始構(gòu)形及內(nèi)力的確定方法[J];特種結(jié)構(gòu);2006年04期
6 譚冬蓮;大跨徑自錨式懸索橋合理成橋狀態(tài)的確定方法[J];中國公路學(xué)報(bào);2005年02期
7 林元培,章曾煥,盧永成,丁建康,張劍英;上海東海大橋工程總體設(shè)計(jì)[J];城市道橋與防洪;2004年04期
8 汪勁豐,施篤錚,徐興;確定斜拉橋最優(yōu)恒載索力方法的探索[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2002年02期
9 羅福午;19世紀(jì)第一懸索橋——布魯克林橋[J];建筑技術(shù);2001年10期
10 金增洪;迪辛格(Dischinger)型對超長橋梁的適用性[J];中外公路;2001年04期
,本文編號:1645438
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1645438.html