低速環(huán)境下的智能車無人駕駛技術(shù)研究
發(fā)布時(shí)間:2018-03-14 14:26
本文選題:智能車 切入點(diǎn):無人駕駛 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:智能車是一種涉及環(huán)境感知、人工智能、自動(dòng)控制、車輛工程等多種學(xué)科的全新汽車概念和產(chǎn)品。無人駕駛作為智能車的關(guān)鍵技術(shù)和研究方向,已經(jīng)引起了國內(nèi)外諸多部門、企業(yè)、學(xué)校的高度重視,并取得了一定的研究成果。城市環(huán)境作為智能車的重點(diǎn)應(yīng)用領(lǐng)域,由于其復(fù)雜的道路環(huán)境,成為了無人駕駛技術(shù)研究的重點(diǎn)和難點(diǎn)。本文以低速環(huán)境,特別是半結(jié)構(gòu)化的城市交通環(huán)境作為研究對(duì)象,以實(shí)現(xiàn)無人駕駛相關(guān)關(guān)鍵技術(shù)作為研究目標(biāo)。本文研究內(nèi)容主要概括為以下幾個(gè)方面:(1)對(duì)智能車和無人駕駛技術(shù)進(jìn)行了深入調(diào)研,詳細(xì)設(shè)計(jì)并分析了本文所用智能車的平臺(tái)架構(gòu)和無人駕駛方案,為本文無人駕駛關(guān)鍵技術(shù)的實(shí)現(xiàn)奠定了基礎(chǔ)。(2)針對(duì)道路識(shí)別,本文提出了一種基于攝像頭和激光雷達(dá)的道路邊緣檢測(cè)方法。該方法通過對(duì)圖像處理結(jié)果和雷達(dá)分析結(jié)果進(jìn)行數(shù)據(jù)融合可獲得準(zhǔn)確的道路邊緣。(3)針對(duì)障礙物檢測(cè),本文提出了一種基于激光雷達(dá)的障礙物檢測(cè)與避撞方法,該方法通過分析雷達(dá)數(shù)據(jù)獲得障礙物所在的模糊區(qū)域,并對(duì)障礙物分布進(jìn)行分析后得出最優(yōu)行駛路線。(4)針對(duì)自主導(dǎo)航,本文提出了一種基于多傳感器融合的地圖導(dǎo)航方法。該方法通過對(duì)電子地圖進(jìn)行實(shí)時(shí)校正以獲得正確的道路信息,利用GPS/DR組合定位獲得精確穩(wěn)定的位置信息,再結(jié)合雷達(dá)數(shù)據(jù)做出路口環(huán)境下的局部導(dǎo)航策略。(5)通過虛擬環(huán)境和真實(shí)環(huán)境下的無人駕駛實(shí)驗(yàn),驗(yàn)證了本文所述無人駕駛技術(shù)的有效性和可靠性,并提出了本文所存在的不足之處和改進(jìn)方向。
[Abstract]:Intelligent vehicle is a new vehicle concept and product involving environmental perception, artificial intelligence, automatic control, vehicle engineering and so on. As the key technology and research direction of intelligent vehicle, unmanned driving has caused many departments at home and abroad. Enterprises and schools attach great importance to it, and have achieved some research results. As a key application field of smart cars, urban environment has become the focus and difficulty of driverless technology research because of its complex road environment. Especially the semi-structured urban traffic environment as the research object, In order to realize the key technology of driverless, the research content of this paper is summarized as follows: 1) the intelligent vehicle and driverless technology are investigated deeply. The platform architecture and driverless scheme of the intelligent vehicle used in this paper are designed and analyzed in detail, which lays a foundation for the realization of the key technology of unmanned driving in this paper. In this paper, a road edge detection method based on camera and lidar is proposed. This method can get accurate road edge detection by data fusion of image processing results and radar analysis results. In this paper, a method of obstacle detection and collision avoidance based on lidar is proposed. By analyzing radar data to get the fuzzy area of obstacle, and after analyzing the distribution of obstacle, we can get the optimal route. In this paper, a map navigation method based on multi-sensor fusion is proposed, which can get correct road information by real time correction of electronic map, and obtain accurate and stable position information by GPS/DR combined positioning. Combined with radar data to make the local navigation strategy. 5) through the virtual environment and the real environment of unmanned driving experiments to verify the effectiveness and reliability of the unmanned driving technology described in this paper. The shortcomings of this paper and the direction of improvement are also put forward.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U463.6;U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 王國胤;陳喬松;王進(jìn);;智能車技術(shù)探討[J];計(jì)算機(jī)科學(xué);2012年05期
2 孫永榮,劉建業(yè),陸濤,劉建國,何秀鳳;基于自適應(yīng)濾波的車載DR系統(tǒng)研究[J];南京航空航天大學(xué)學(xué)報(bào);2000年04期
,本文編號(hào):1611608
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1611608.html
最近更新
教材專著